Boolean valued second order logic

Daisuke Ikegami Tokyo Denki University

Joint work with Jouko Väänänen

1st of December, 2016

We will work on 2nd-order logic.

Review; 1st-order logic

1st-order logic enjoys several nice properties:

- Completeness Theorem
- The set of (Gödel numbers of) valid sentences is Σ₁⁰.

- Compactness Theorem
- Löwenheim-Skolem-Tarski Theorem

Review; 1st-order logic

1st-order logic enjoys several nice properties:

- Completeness Theorem
- The set of (Gödel numbers of) valid sentences is Σ⁰₁.
- Compactness Theorem
- Löwenheim-Skolem-Tarski Theorem

How about 2nd-order logic?

2nd-order logic; Two semantics

- 1. Henkin semantics: Very simple (very week), essentially the same as 1st-order logic
- 2. Full semantics: Highly complex (very powerful), does NOT enjoy completeness, compactness.

Full semantics

Full semantics = semantics with full 2nd-order structures Definition Full 2nd-order structures are those of the form $M = (A, \mathcal{P}(A), ...).$

Full semantics

Full semantics = semantics with full 2nd-order structures Definition Full 2nd-order structures are those of the form $M = (A, \mathcal{P}(A), ...).$

Theorem (Väänänen?)

The set of valid 2nd-order sentences with full semantics is Π_2 -complete in the language of set theory.

Full semantics

Full semantics = semantics with full 2nd-order structures Definition Full 2nd-order structures are those of the form $M = (A, \mathcal{P}(A), ...).$

Theorem (Väänänen?)

The set of valid 2nd-order sentences with full semantics is Π_2 -complete in the language of set theory.

Point: There is a 2nd-order sentence ϕ_0 in the language $\mathcal{L} = \{R\}$ such that for any 2nd-order full \mathcal{L} -structure $M = (A, \mathcal{P}(A), R^M)$,

 $M \vDash \phi_0 \iff$ for some λ with $\lambda = |V_\lambda|$, $(A, R^M) \simeq (V_\lambda, \in)$.

(日) (同) (三) (三) (三) (○) (○)

Full semantics ctd.

Theorem (Folklore?)

There is a 2nd-order sentence ϕ_1 in the language \mathcal{L} of Peano Arithmetic (PA) such that for any 2nd-order full \mathcal{L} -structure $M = (A, \mathcal{P}(A), \ldots)$,

$$M \vDash \phi_1 \iff (A, \ldots) \simeq (\mathbb{N}, +, \times, 1).$$

In particular, Compactness Theorem fails for 2nd-order logic with full semantics.

In this talk ...

We introduce Boolean valued semantics for 2nd-order logic and compare it with full semantics w.r.t. the following 3 points:

- 1. Complexity of the validity
- 2. How much Compactness Theorem holds (or fails)
- 3. The construction of Gödel's L w.r.t. the corresponding definability

Boolean valued semantics; Introduction

Idea: Consider all the Boolean-valued subsets of the form

 $f: A \rightarrow \mathbb{B}$,

where A: the 1st-order universe, \mathbb{B} : a complete Boolean algebra

Boolean valued semantics; Introduction

Idea: Consider all the Boolean-valued subsets of the form

 $f: A \rightarrow \mathbb{B}$,

where A: the 1st-order universe, \mathbb{B} : a complete Boolean algebra

Note: When $\mathbb{B} = \{0, 1\}$, it is the same as considering all the subsets $\mathcal{P}(A)$, i.e., full semantics.

Boolean-valued semantics; Boolean-valued structures

From now on, \mathcal{L} will be a relational language $\{R_1, \ldots, R_m\}$.

Boolean-valued semantics; Boolean-valued structures

From now on, \mathcal{L} will be a relational language $\{R_1, \ldots, R_m\}$. Definition A Boolean-valued \mathcal{L} -structure is a tuple $M = (A, \mathbb{B}, \{R_i^M\})$ where

- 1. A is a nonempty set,
- 2. ${\mathbb B}$ is a complete Boolean algebra, and
- 3. for each *n*-ary relational symbol R_i in \mathcal{L} , $R_i^M : A^n \to \mathbb{B}$.

(日) (同) (三) (三) (三) (○) (○)

Boolean-valued semantics; Boolean-valued structures

From now on, \mathcal{L} will be a relational language $\{R_1, \ldots, R_m\}$. Definition A Boolean-valued \mathcal{L} -structure is a tuple $M = (A, \mathbb{B}, \{R_i^M\})$ where

- 1. A is a nonempty set,
- 2. ${\mathbb B}$ is a complete Boolean algebra, and
- 3. for each *n*-ary relational symbol R_i in \mathcal{L} , $R_i^M : A^n \to \mathbb{B}$.

Example

If $\mathbb{B} = \{0, 1\}$, R_i^M is a relation in 1st-order logic and M is the same as a 1st-order \mathcal{L} -structure.

Boolean valued semantics; the interpretation From now on,

y or \vec{y} : 1st-order variables, X: 2nd-order variables.

Boolean valued semantics; the interpretation From now on,

y or \vec{y} : 1st-order variables, X: 2nd-order variables.

Definition

Let $M = (A, \mathbb{B}, \{R_i^M\})$ be a Boolean-valued \mathcal{L} -structure. Then we assign $\|\phi[\vec{a}, \vec{f}]\|^M$ to each 2nd-order formula $\phi, \vec{a} \in A^{<\omega}$, and $\vec{f} \in (\mathbb{B}^A)^{<\omega}$ as follows:

Boolean valued semantics; the interpretation From now on.

y or \vec{y} : 1st-order variables, X: 2nd-order variables.

Definition

Let $M = (A, \mathbb{B}, \{R_i^M\})$ be a Boolean-valued \mathcal{L} -structure. Then we assign $\|\phi[\vec{a}, \vec{f}]\|^M$ to each 2nd-order formula $\phi, \vec{a} \in A^{<\omega}$, and $\vec{f} \in (\mathbb{B}^A)^{<\omega}$ as follows:

- 1. ϕ is $R_i(\vec{y})$. Then $||R_i(\vec{y})[\vec{a}]||^M = R_i^M(\vec{a})$.
- 2. ϕ is X(y). Then $||X(y)[a, f]||^M = f(a)$.
- 3. Boolean combinations are as usual.
- 4. ϕ is $\exists y\psi$. Then $\|\exists y\psi[\vec{a},\vec{f}]\|^M = \bigvee_{b\in A} \|\psi[b,\vec{a},\vec{f}]\|^M$.
- 5. ϕ is $\exists X\psi$. Then $\|\exists X\psi[\vec{a},\vec{f}]\|^M = \bigvee_{g: A \to \mathbb{B}} \|\psi[\vec{a},g,\vec{f}]\|^M$.

(日) (同) (三) (三) (三) (○) (○)

Boolean-valued semantics; the interpretation ctd.

Let $\ensuremath{\mathbb{B}}$ be a complete Boolean algebra. Then

 $(\mathbb{B}$ -valued semantics) = (Full semantics in $V^{\mathbb{B}}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Boolean-valued semantics; the interpretation ctd.

Let ${\mathbb B}$ be a complete Boolean algebra. Then

 $(\mathbb{B}$ -valued semantics) = (Full semantics in $V^{\mathbb{B}}$)

Definition Let $M = (A, \mathbb{B}, \{R_i^M\})$ be a Boolean valued \mathcal{L} -structure and G be a \mathbb{B} -generic filter over V. Then for each *n*-ary predicate R_i , set $R_i^{M/G}$ as follows:

$$R_i^{M/G} = \{ \vec{x} \in A^n \mid R_i^M(\vec{x}) \in G \}.$$

Then let M/G be the full 2nd-order \mathcal{L} -structure $(A, \mathcal{P}^{V[G]}(A), \{R_i^{M/G}\})$ in V[G].

Boolean-valued semantics; the interpretation ctd..

 $(\mathbb{B}$ -valued semantics) = (Full semantics in $V^{\mathbb{B}}$)

Key Lemma (Forcing Theorem)

If ϕ is a 2nd-order \mathcal{L} -sentence and $b \in \mathbb{B}$, then the following are equivalent:

- 1. $\|\phi\|^{M} = b$, and
- 2. for any \mathbb{B} -generic filter G over V with $b \in G$, $M/G \vDash \phi$.

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Remark

 ϕ is Boolean-valid if and only if ϕ is valid w.r.t. full semantics in any set generic extension.

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Remark

 ϕ is Boolean-valid if and only if ϕ is valid w.r.t. full semantics in any set generic extension.

Definition

 $0^{2f} = \{ \phi \mid \phi \text{ is valid w.r.t. full semantics} \}$ $0^{2b} = \{ \phi \mid \phi \text{ is Boolean valid} \}.$

Definition

A 2nd-order \mathcal{L} -sentence ϕ is Boolean-valid if $\|\phi\|^M = 1$ for any Boolean-valued \mathcal{L} -structure M.

Remark

 ϕ is Boolean-valid if and only if ϕ is valid w.r.t. full semantics in any set generic extension.

Definition

$$0^{2f} = \{ \phi \mid \phi \text{ is valid w.r.t. full semantics} \}$$
$$0^{2b} = \{ \phi \mid \phi \text{ is Boolean valid} \}.$$

Question 0^{2f} or 0^{2b} , which is more complicated?

BV semantics vs full semantics; Validity

Theorem (Väänänen, I.) If V = L, then $0^{2b} \equiv_T 0^{2f}$.

Point: Gödel's L is absolute in any set generic extension of L.

BV semantics vs full semantics; Validity

Theorem (Väänänen, I.) If V = L, then $0^{2b} \equiv_T 0^{2f}$.

Point: Gödel's L is absolute in any set generic extension of L.

Theorem (Väänänen, I.)

If you assume the existence of proper class many Woodin cardinals and the Ω -Conjecture, then 0^{2b} is strictly simpler than 0^{2f} .

Point: $0^{2b} \equiv_{\mathsf{T}} \mathbf{0}^{\Omega} = \{ \psi \mid \psi \text{ is } \Omega \text{-valid} \}.$

Compactness numbers

Definition

Let \mathbb{L} be a logic. Then the Compactness number $\kappa^{\mathbb{L}}$ of \mathbb{L} is defined as follows:

 $\kappa^{\mathbb{L}} = \min\{\kappa \mid \text{for any set } T \text{ of sentences in } \mathbb{L}, \text{ if every subset}$ of T of size less than κ has a model, then T has a model}

Compactness numbers

Definition

Let \mathbb{L} be a logic. Then the Compactness number $\kappa^{\mathbb{L}}$ of \mathbb{L} is defined as follows:

 $\kappa^{\mathbb{L}} = \min\{\kappa \mid \text{for any set } T \text{ of sentences in } \mathbb{L}, \text{ if every subset}$ of T of size less than κ has a model, then T has a model}

Example

If $\mathbb L$ is 1st-order logic with the standard semantics, then $\kappa^{\mathbb L}=\omega.$

BV semantics vs full semantics; Compactness

$$\kappa^{2f} = \kappa^{\mathbb{L}}$$
 for $\mathbb{L} = \text{SOL w.r.t.}$ full semantics
 $\kappa^{2b} = \kappa^{\mathbb{L}}$ for $\mathbb{L} = \text{SOL w.r.t.}$ Boolean-valued semantics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

BV semantics vs full semantics; Compactness

$$\kappa^{2f} = \kappa^{\mathbb{L}}$$
 for $\mathbb{L} = \text{SOL w.r.t.}$ full semantics $\kappa^{2b} = \kappa^{\mathbb{L}}$ for $\mathbb{L} = \text{SOL w.r.t.}$ Boolean-valued semantics

Theorem (Magidor)

κ^{2f} exists if and only if there is an extendible cardinal.
If κ^{2f} exists, then κ^{2f} is the *least* extendible cardinal.

Definition

A cardinal κ is extendible if for any α with $\kappa < \alpha$, there are a β and an elementary embedding $j: (V_{\alpha}, \in) \rightarrow (V_{\beta}, \in)$ with critical point κ such that $j(\kappa) > \alpha$.

BV semantics vs full semantics; Compactness ctd.

Theorem (Väänänen, I.)

- 1. κ^{2b} exists if and only if there is a generically extendible cardinal.
- 2. If κ^{2b} exists, then κ^{2b} is the *least* generically extendible cardinal.

Definition

A cardinal κ is generically extendible if for any α with $\kappa < \alpha$, there is a set generic extension V[G] of V such that in V[G], there are a β and an elementary embedding $j: (V_{\alpha}, \in)^{V} \to (V_{\beta}, \in)^{V[G]}$ with critical point κ such that $j(\kappa) > \alpha$.

BV semantics vs full semantics; Compactness ctd..

Question

How small could generically extendible cardinals be?

BV semantics vs full semantics; Compactness ctd..

Question

How small could generically extendible cardinals be?

Theorem (Väänänen, I.)

Suppose there are proper class many Woodin cardinals. Then every successor cardinal is generically extendible. In particular, $\kappa^{2b} = \omega_1$.

Point: Use Stationary Tower Forcing $\mathbb{P}_{<\delta}$.

BV semantics vs full semantics; Compactness ctd..

Question

How small could generically extendible cardinals be?

Theorem (Väänänen, I.)

Suppose there are proper class many Woodin cardinals. Then every successor cardinal is generically extendible. In particular, $\kappa^{2b} = \omega_1$.

Point: Use Stationary Tower Forcing $\mathbb{P}_{<\delta}$.

Open problem

What is the consistency strength of a generically extendible cardinal?

Gödel's Constructible Hierarchy

Definition

$$\begin{split} & L_0 = \emptyset, \\ & L_{\alpha+1} = \mathsf{Def}_{\mathsf{FOL}}\big((L_\alpha, \in)\big), \\ & L_\gamma = \bigcup_{\alpha < \gamma} L_\alpha \quad (\gamma \text{ is limit}), \\ & L = \bigcup_{\alpha \in \mathsf{On}} L_\alpha. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inner models from logics

 $\begin{array}{l} \text{Definition} \\ \text{Given a logic } \mathbb{L} \text{ extending FOL,} \end{array}$

$$\begin{split} \mathbf{L}_{0}^{\mathbb{L}} &= \emptyset, \\ \mathbf{L}_{\alpha+1}^{\mathbb{L}} &= \mathsf{Def}_{\mathbb{L}}\big((\mathbf{L}_{\alpha}^{\mathbb{L}}, \in)\big), \\ \mathbf{L}_{\gamma}^{\mathbb{L}} &= \bigcup_{\alpha < \gamma} \mathbf{L}_{\alpha}^{\mathbb{L}} \quad (\gamma \text{ is limit}), \\ \mathbf{L}(\mathbb{L}) &= \bigcup_{\alpha \in \mathsf{On}} \mathbf{L}_{\alpha}^{\mathbb{L}}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BV semantics vs full semantics; Gödel's L

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Myhill, Scott) If \mathbb{L} is SOL with full semantics, then $L(\mathbb{L}) = HOD$.

BV semantics vs full semantics; Gödel's L ctd. Let L^{2b} be $L(\mathbb{L})$ for $\mathbb{L} = SOL$ with Boolean-valued semantics. Theorem (I.)

Suppose there are proper class many Woodin cardinals. Then L^{2b} is the least inner model M of ZFC such that for any poset P in M and any P-generic filter G over V,

$$(H_{\omega_1},\in)^{M[G]}\prec (H_{\omega_1},\in)^{V[G]}.$$

(日) (同) (三) (三) (三) (○) (○)

In particular, Projective Determinacy (PD) holds in L^{2b} .

BV semantics vs full semantics; Gödel's L ctd. Let L^{2b} be $L(\mathbb{L})$ for $\mathbb{L} = SOL$ with Boolean-valued semantics. Theorem (I.)

Suppose there are proper class many Woodin cardinals. Then L^{2b} is the least inner model M of ZFC such that for any poset P in M and any P-generic filter G over V,

$$(H_{\omega_1},\in)^{M[G]}\prec (H_{\omega_1},\in)^{V[G]}.$$

In particular, Projective Determinacy (PD) holds in L^{2b} . Also, L^{2b} is the least inner model of ZFC closed under the operator $(n, x) \mapsto M_n^{\#}(x)$. Furthermore,

- 1. L^{2b} is invariant under set forcings, and
- 2. L^{2b} is a premouse, hence is a model of GCH, \diamondsuit_{κ} , and \Box_{κ} for all uncountable regular cardinals κ .

Conclusion

- Henkin semantics and full semantics are the major semantics for 2nd-order logic.
- Henkin semantics is essentially the same as 1st-order logic.
- Full semantics is much more powerful than 1st-order logic and highly complicated.

• Boolean-valued semantics is a powerful semantics for 2nd-order logic while it could be simpler than full semantics under the existence of large cardinals.

The End.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ