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In this talk...

We will work on 2nd-order logic.



Review; 1st-order logic

1st-order logic enjoys several nice properties:

• Completeness Theorem

• The set of (Gödel numbers of) valid sentences is Σ0
1.

• Compactness Theorem

• Löwenheim-Skolem-Tarski Theorem

How about 2nd-order logic?
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2nd-order logic; Two semantics

1. Henkin semantics: Very simple (very week), essentially
the same as 1st-order logic

2. Full semantics: Highly complex (very powerful), does
NOT enjoy completeness, compactness.



Full semantics
Full semantics = semantics with full 2nd-order structures

Definition
Full 2nd-order structures are those of the form
M = (A,P(A), . . .).

Theorem (Väänänen?)
The set of valid 2nd-order sentences with full semantics is
Π2-complete in the language of set theory.

Point: There is a 2nd-order sentence ϕ0 in the language
L = {R} such that for any 2nd-order full L-structure
M = (A,P(A),RM),

M ⊨ ϕ0 ⇐⇒ for some λ with λ = |Vλ|, (A,RM) ≃ (Vλ,∈).
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Full semantics ctd.

Theorem (Folklore?)
There is a 2nd-order sentence ϕ1 in the language L of Peano
Arithmetic (PA) such that for any 2nd-order full L-structure
M = (A,P(A), . . .),

M ⊨ ϕ1 ⇐⇒ (A, . . .) ≃ (N,+,×, 1).

In particular, Compactness Theorem fails for 2nd-order logic
with full semantics.



In this talk...

We introduce Boolean valued semantics for 2nd-order logic and
compare it with full semantics w.r.t. the following 3 points:

1. Complexity of the validity

2. How much Compactness Theorem holds (or fails)

3. The construction of Gödel’s L w.r.t. the corresponding
definability



Boolean valued semantics; Introduction

Idea: Consider all the Boolean-valued subsets of the form

f : A → B,

where A: the 1st-order universe, B: a complete Boolean
algebra

Note: When B = {0, 1}, it is the same as considering all the
subsets P(A), i.e., full semantics.
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Boolean-valued semantics; Boolean-valued

structures

From now on, L will be a relational language {R1, . . . ,Rm}.

Definition
A Boolean-valued L-structure is a tuple M = (A,B, {RM

i })
where

1. A is a nonempty set,

2. B is a complete Boolean algebra, and

3. for each n-ary relational symbol Ri in L, RM
i : An → B.

Example
If B = {0, 1}, RM

i is a relation in 1st-order logic and M is the
same as a 1st-order L-structure.
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Boolean valued semantics; the interpretation
From now on,

y or y⃗ : 1st-order variables, X : 2nd-order variables.

Definition
Let M = (A,B, {RM

i }) be a Boolean-valued L-structure. Then
we assign ∥ϕ[⃗a, f⃗ ]∥M to each 2nd-order formula ϕ, a⃗ ∈ A<ω,

and f⃗ ∈ (BA)<ω as follows:

1. ϕ is Ri(y⃗). Then ∥Ri(y⃗)[⃗a]∥M = RM
i (⃗a).

2. ϕ is X (y). Then ∥X (y)[a, f ]∥M = f (a).

3. Boolean combinations are as usual.

4. ϕ is ∃yψ. Then ∥∃yψ[⃗a, f⃗ ]∥M =
∨

b∈A ∥ψ[b, a⃗, f⃗ ]∥M .

5. ϕ is ∃Xψ. Then ∥∃Xψ[⃗a, f⃗ ]∥M =
∨

g : A→B ∥ψ[⃗a, g , f⃗ ]∥M .
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Boolean-valued semantics; the interpretation ctd.

Let B be a complete Boolean algebra. Then

(B-valued semantics) = (Full semantics in V B)

Definition
Let M = (A,B, {RM

i }) be a Boolean valued L-structure and
G be a B-generic filter over V . Then for each n-ary predicate
Ri , set R

M/G
i as follows:

R
M/G
i = {x⃗ ∈ An | RM

i (x⃗) ∈ G}.

Then let M/G be the full 2nd-order L-structure
(A,PV [G ](A), {RM/G

i }) in V [G ].
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Boolean-valued semantics; the interpretation ctd..

(B-valued semantics) = (Full semantics in V B)

Key Lemma (Forcing Theorem)
If ϕ is a 2nd-order L-sentence and b ∈ B, then the following
are equivalent:

1. ∥ϕ∥M = b, and

2. for any B-generic filter G over V with b ∈ G , M/G ⊨ ϕ.



Boolean-valued semantics; Validity

Definition
A 2nd-order L-sentence ϕ is Boolean-valid if ∥ϕ∥M = 1 for
any Boolean-valued L-structure M .

Remark
ϕ is Boolean-valid if and only if ϕ is valid w.r.t. full semantics
in any set generic extension.

Definition

02f = {ϕ | ϕ is valid w.r.t. full semantics}
02b = {ϕ | ϕ is Boolean valid}.

Question
02f or 02b, which is more complicated?
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BV semantics vs full semantics; Validity

Theorem (Väänänen, I.)
If V = L, then 02b ≡T 02f .

Point: Gödel’s L is absolute in any set generic extension of L.

Theorem (Väänänen, I.)
If you assume the existence of proper class many Woodin
cardinals and the Ω-Conjecture, then 02b is strictly simpler
than 02f .

Point: 02b ≡T 0Ω = {ψ | ψ is Ω-valid}.
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Compactness numbers

Definition
Let L be a logic. Then the Compactness number κL of L is
defined as follows:

κL = min{κ | for any set T of sentences in L, if every subset
of T of size less than κ has a model, then T has a model}

Example
If L is 1st-order logic with the standard semantics, then
κL = ω.
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BV semantics vs full semantics; Compactness

κ2f = κL for L = SOL w.r.t. full semantics

κ2b = κL for L = SOL w.r.t. Boolean-valued semantics

Theorem (Magidor)

1. κ2f exists if and only if there is an extendible cardinal.

2. If κ2f exists, then κ2f is the least extendible cardinal.

Definition
A cardinal κ is extendible if for any α with κ < α, there are a
β and an elementary embedding j : (Vα,∈) → (Vβ,∈) with
critical point κ such that j(κ) > α.
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BV semantics vs full semantics; Compactness ctd.

Theorem (Väänänen, I.)

1. κ2b exists if and only if there is a generically extendible
cardinal.

2. If κ2b exists, then κ2b is the least generically extendible
cardinal.

Definition
A cardinal κ is generically extendible if for any α with κ < α,
there is a set generic extension V [G ] of V such that in V [G ],
there are a β and an elementary embedding
j : (Vα,∈)V → (Vβ,∈)V [G ] with critical point κ such that
j(κ) > α.



BV semantics vs full semantics; Compactness ctd..

Question
How small could generically extendible cardinals be?

Theorem (Väänänen, I.)
Suppose there are proper class many Woodin cardinals. Then
every successor cardinal is generically extendible. In particular,
κ2b = ω1.

Point: Use Stationary Tower Forcing P<δ.

Open problem
What is the consistency strength of a generically extendible
cardinal?
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Gödel’s Constructible Hierarchy

Definition

L0 = ∅,
Lα+1 = DefFOL

(
(Lα,∈)

)
,

Lγ =
∪
α<γ

Lα (γ is limit),

L =
∪

α∈On

Lα.



Inner models from logics

Definition
Given a logic L extending FOL,

LL
0 = ∅,

LL
α+1 = DefL

(
(LL

α,∈)
)
,

LL
γ =

∪
α<γ

LL
α (γ is limit),

L(L) =
∪

α∈On

LL
α.



BV semantics vs full semantics; Gödel’s L

Theorem (Myhill, Scott)
If L is SOL with full semantics, then L(L) = HOD.



BV semantics vs full semantics; Gödel’s L ctd.
Let L2b be L(L) for L = SOL with Boolean-valued semantics.

Theorem (I.)
Suppose there are proper class many Woodin cardinals. Then
L2b is the least inner model M of ZFC such that for any poset
P in M and any P-generic filter G over V ,

(Hω1 ,∈)M[G ] ≺ (Hω1 ,∈)V [G ].

In particular, Projective Determinacy (PD) holds in L2b.

Also, L2b is the least inner model of ZFC closed under the
operator (n, x) 7→ M#

n (x). Furthermore,

1. L2b is invariant under set forcings, and

2. L2b is a premouse, hence is a model of GCH, ♢κ, and □κ

for all uncountable regular cardinals κ.



BV semantics vs full semantics; Gödel’s L ctd.
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Conclusion

• Henkin semantics and full semantics are the major
semantics for 2nd-order logic.

• Henkin semantics is essentially the same as 1st-order
logic.

• Full semantics is much more powerful than 1st-order logic
and highly complicated.

• Boolean-valued semantics is a powerful semantics for
2nd-order logic while it could be simpler than full
semantics under the existence of large cardinals.



The End.


