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Discrete sets
Let R be a binary relation on a set X.
Definition

We say a set A C X is discrete (w.r.t. R) < no two distinct
elements x, y of A are R-related.

Definition
We call such a set maximal discrete (w.r.t. R; short R-m.d.) if it is not
a proper subset of any discrete set.

Ais maximal discrete iff A is discrete and for any x € X'\ A

(Jace A)(aRx)V(xRa)
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Discrete sets (non-binary)

Let X be asetand R C X<v,

Definition
We say a set A C X is discrete (w.r.t. B) <— A<~“N R = . J

The notion of maximal discrete set is defined as before.
A is maximal discrete iff A is discrete and for any x € X'\ A

(30, -, ¥n € AU{X}) (Yo,---, ¥n) € R.

While maximal discrete sets always exist (under AC), one can study
under which circumstances they can be definable.
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Examples

There are many interesting examples where X is an effective Polish
space and R is Borel:

Binary

@ Transversals for equivalence relations
@ mad families

@ maximal eventually different families
@ maximal orthogonal families of measures

Higher arity

@ Hamel basis of R over Q
@ Cofinitary groups

...and many more.
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Example 1: mad families
Let X = [w].

Define R C X? as follows: For x, y € X,

xRy < xnyisinfinite.

A mad family is an infinite maximal discrete set w.r.t. R.
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Some facts about mad families

@ > Thereis no analytic mad family (Mathias, 1968).
» There is a (lightface) NM! mad family in L (A. R. Miller, 1987).
» If there is a X} mad family, there is a M} mad family (Térnquist,
2013).

©@ > One can find mad families which remain mad after forcing (for
various forcings; many authors).
» In particular, the existence of a Ml mad family is consistent with
arbitrary values for 2v.

© One can force that there are no definable mad families:

» Mathias, ca. 1969: from a Mahlo,

» Térnquist, 2015: from an inaccessible (no mad families in Solovay’s
model),

» Horowitz-Shelah, 2016: from ZFC.
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“there is no projective R-m.d. family” is equiconsistent with ZFC in
several other cases, as well:

@ maximal eventually different families of functions
(Brendle-Khomskii, unpublished)

@ maximal orthogonal families of measures (Fischer-Térnquist,
2010); This is because the same holds for “every projective set
has the Baire property”

Example 2

The statement that there are no definable R-m.d. sets can have large
cardinal strength:

Theorem (Horowitz-Shelah, 2016)

There is a Borel binary relation R on 2 (in fact, a graph relation) such
that “there is no projective R-m.d. set” is equiconsistent with the
existence of an inaccessible cardinal.
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Example 3

Let X =w®¥ and for f,g € X let
fRg < {n]| f(n) = g(n)} is infinite.
A (maximal) discrete set w.r.t. R is a (maximal) eventually different

family.

Theorem (Horowitz-Shelah, 2016)
(ZF) There is a Borel maximal eventually different family. J

Such a family remains m.d. in any larger universe.
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Example 4: Orthogonality of measures

@ Let P(2¥) be the set of Borel probability measures on 2¢.

@ Two measures u, v € P(2%) are said to be orthogonal, written
wlv
exactly if: there is a Borel set A C 2% such that
(A) =1

and
v(A) = 0.

@ Note that P(2v) is an effective Polish space.
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History of maximal orthogonal families

Question (Mauldin, circa 1980)
Can a mof in P(2*) be analytic?

The answer turned out to be ‘no’:

Theorem (Preiss-Rataj, 1985)
There is no analytic mof in P(2+).

This is optimal, in a sense:

Theorem (Fischer-Térnqust, 2009)
InL, there is a Nl mof in P(2~).

In fact:
Theorem
If there is a £}, mof in P(2+), there is a N} mof.
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Mofs and forcing
Mofs are fragile creatures:

Facts

@ Adding any real destroys maximality of mofs from the
groundmodel (observed by Ben Miller; not restricted to forcing
extensions)

@ If there is a Cohen real over L, there are no £} mofs in P(2+)
(F-T, 2009)

© The same holds if there is a random real over L
(Fischer-Friedman-Térnquist, 2010).

© The same holds if there is a Mathias real over L (S-Toérnquist,
2015).

Question (F-T, 2009)
If there is a M} mof, does it follow that P(w) C L?

v
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Ml mofs in extensions of L

Theorem (S-Térnquist, 2015)
If s is Sacks over L there is a (lightface!) N1 mof in L[s].

Theorem (S 2016)

The statement ‘there is a N} mof ’ is consistent with 2 = wy.

In fact :

Theorem (S 2016)

Let R be a binary ©1 relation on an effective Polish space X. If s is
generic for iterated Sacks forcing over L, there is a (lightface) A}
maximal R-discrete set in L[s].
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Here is the main idea of the proof in the case of adding a single Sacks
real.

Assume R is symmetric (otherwise, look at RU R~7).

Of course Sacks forcing S is the set of perfect trees p C 2<“, ordered
by inclusion and [p] is the set of branches through p.

We need the following theorem of Galvin:

Theorem (Galvin’s Theorem)

Letp e S and
c: [pl? — {0,1}

be symmetric and Baire measurable.
Then there is q € S, g < p such that c is constant on

[q]? \ diag
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The m.d. set will be a union of w{-many perfect sets:
For some for sequence of perfect sets (P; | { < wq) € L, our m.d. set is

just
U p L[s]
E<wy
We construct this sequence by induction: Say we have
(P, | v < &) €L, and say we have p € S and a S-name which are
candidates for
p Ik x is not in our family.

So assume that p I (Vy € UV<§ 2,)-~(x Ry).
We can also assume x is given by a continuous function f: 2¥ — X:

pl-x = f(sg).

It is easy to thin out p so that

(vx € "[p)(vy € |J P)~(xRy).

v<€
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Further thin out such that either:

Q@ f’[p] is R-discrete

Q ("[p] is R-complete, i.e. (Vx,y € f"[p]) xR y.
In the first case, let P: = f’[p]. As

pl-x=f(sg) € Pe

we have dealt with this candidate.
In the second case, let P; = {f(z)}, where z is the left-most branch
through p. By Shoenfield absoluteness

pl-x = f(sz) R f(z),

so we have again dealt with this candidate.
In either case, |, . P, is discrete. By N} absoluteness, this will hold

for Ue.,,, Pe as well |
As there are only wy-many pairs (X, p) as above, we can ensure
maximality.
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A basis for R over Q

Let X = R and let R be the set of finite tuples from X which are linearly
dependent over Q.

A more involved proof but using similar ideas as in the previous sketch
(including a generalization of Galvin’s theorem to k-tuples due to
Blass) gives us:

Theorem (S 2016)
If s is a Sacks real over L, there is a1} basis for R over Q in L[s]. J

Schrittesser (Copenhagen) Combinatorics, Definability & Forcing RIMS 2016 16/25



What is Galvin’s Theorem for iterated Sacks forcing?

@ Let P be iterated Sacks forcing and p € P. What is [p]?
@ Provided we can define [p].. .

Question:
Is there for every p € P and every

c: [p]? — {0,1}

which is symmetric and nice, some g € P, g < p such that c is
constant on [g]? \ diag?

What do | mean by nice?

@ Answer is ‘yes’ for ¢ which is continuous on [p]? \ diag
(Geschke-Kojman-Kubis-Schipperus)

@ perhaps Baire measurable...?
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For a dense set of p € P we have:
0 Thereis Fy: [p(0)] — PERFECT TREES and o1 € supp(p) such that

p - p(o1) = Fo(55(0))

1 There is a continuous function F; and o> € supp(p) such that
(letting o9 = 0)
p I p(o2) = Fi(55 | 02)

w And so on: There exists sequences Fy, ..., Fk, ... and
0o, ---,0k, - .. With oo = 0 such that the analogous holds for each
k € w and

{ok | k € w} = supp(p)
Then [7] is the subspace of (2)* consisting of

X : supp(p) — 2¢
such that for each n ¢ w

X(on) € [Fn(X | on)]
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A counterexample
LetpeP. Fix ¢ < A

Define a symmetric Borel function
c: [pI* — {01}

by
1 if X% (8) # x1(§)

0 otherwise

c(Xo, X1) = {

Note:
@ Every g < p will meet both colours
@ ¢ (1) is open, ¢~ '(0) is closed.
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For Xo, X1 € [p], let

A(Xp, X1) = the least & such that X (&) # X1(£).

Let
A¢ = {(X0, X1) € [P° | A(Xo, %1) = &}

@ Aq is comeager in [p]?
@ So nice must be more restrictive than Baire measurable!
@ otherwise: take c arbitrary on A, £ > 0 (a meager set!)
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Another counterexample:

Fix a bijection G: supp(p) — w.
Define a symmetric function

c: [p® — {0,1}

as follows:
Suppose we have Xp, X1 € [p] and suppose Xy <jex Xi. Let

£ = A(Xo, X1).
If ¢ € supp(p) and G(&) = k, set
c(Xo, X1) = Xi(0)(k).

(When ¢ € supp(p) fails, set c to be 0; this case is irrelevant)

Now if ¢(-, -) only depends on A(-,-) on some [q], [q(0)] can contain at
most two branches, contradiction.
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The solution:

Theorem (Galvin’s Theorem for iterated Sacks forcing)
For every p € P and every symmetric universally Baire

c: [p]® — {0,1}

there is q € P, g < p, with an enumeration (o | k € w) of supp(q) and
a function N: supp(g) — w such that for (X, X1) € [g]? \ diag, the value
of c(Xp, X1) only depends on

£ = A(Xo, X1)
and the following (finite) piece of information:
()_(0 ) K: X1 | K)

where K = {00, ...,on(g)} X N().
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Example 5: Cofinitary groups

@ Work in the space S.., the group of bijections from N to itself
(permutations).

@ idy is the identity function on N, the neutral element of S..

Definition
We say g € S is cofinitary <~—

{n € N | g(n) = n} is finite.

G < S is cofinitary < every g € G \ {idy} is cofinitary.
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Definability of mcgs

Theorem (Kastermans)
No mcg can be K. }

Some history:

@ Gao-Zhang: If V = L, there is a mcg with a I'I] set of generators.
@ Kastermans: If V=L, thereis a I'I] mcg.
@ Fischer-S.-Térnquist, 2015: The existence of a ] mcg is
consistent with arbitrarily large continuum.
Theorem (Horowitz-Shelah, 2016)
(ZF) There is a Borel maximal cofinitary group. J

By ;; absoluteness, a Borel mcg remains maximal in any outer model.
They also claim they will show there is a closed mcg in a future paper.
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Thank You!
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