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Abstract

In this talk, we study club guessing sequences on indescribable

cardinals. We explain outline of proofs of the following results:

➀ κ is indescribable and there is no club guessing sequences on the

set {α < κ: α is regular}.
➁ κ is indescribable and the ideal over κ defined by {X ⊆ κ : X

does not carry a club guessing sequence} is locally κ+-saturated.

We also show the consistency of the statement that κ is Π1
1-

indescribable and the Π1
1-indescribable ideal over κ is κ+-saturated.
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Introduction

Throughout this talk,

κ : a regular uncountable cardinal

Reg : the class of regular cardinals.

Definition 1. S ⊆ κ: stationary set in κ.

A sequence ⟨aα : α ∈ S⟩ is called a diamond sequence

⇐⇒ ∀A ⊆ κ, ∃α ∈ S, aα = A ∩ α.

♢κ(S) ⇐⇒ there exists a diamond sequence on S.
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Large cardinals and diamond principle

Fact 2 (Kunen-Jensen). If κ is a subtle cardinal, then ♢κ(Reg ∩ κ)

holds. Where κ is subtle

⇐⇒ ∀C, club in κ and ∀sequence ⟨aα : α < κ⟩ with aα ⊆ α,

∃α, β ∈ C with α < β and aα = aβ ∩ α.

Many reasonable large cardinals greater than Mahlo (e.g., measur-

able cardinal, Woodin cardinal, etc) are subtle.

κ: a suitable large cardinal ⇒ ♢κ(Reg ∩ κ) holds.
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On the other hand, indescribable cardinals (Σm
n -indescribable car-

dinals, Πm
n -indescribable cardinals) are not subtle in general.

Hence the above fact cannot be applied to indescribable cardinals:

Fact 3 (Woodin, Hauser). Let m,n be natural numbers with 0 < m.

Con(ZFC+ ∃Πm
n -indescribable (resp.Σm

n -indescribable) cardinal)

⇒ Con(ZFC+ ∃κ: Πm
n -indescribable (resp.Σm

n -indescribable) and

¬♢κ(Reg ∩ κ)).
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Club guessing sequence

Definition 4 (Shelah). S ⊆ κ: stationary in κ.

A sequence c⃗ = ⟨cα : α ∈ A⟩ is called a (fully) club guessing se-

quence on A if

➀ cα ⊆ α is a club in α with ot(cα) = cf(α).

➁ For every club set C in κ, ∃α ∈ S, cα ⊆ C.

CGκ(S) ⇐⇒ S carries a club guessing sequence.

A tail club guessing is defined by replacing cα ⊆ C in ① by cα ⊆∗ C

(that is, cα \ ξ ⊆ C for some ξ < α).
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Clearly ♢κ(S) ⇒ CGκ(S).

Fact 5 (Ishiu). For stationary S ⊆ κ, CGκ(S) if and only if S carries

a tail club guessing sequence.

Fact 6 (Shelah). If S ⊆ {α < κ : cf(α) = µ} for some regular µ < κ

with µ+ < κ, then CGκ(S) holds.

Hence

➀ If κ = µ+, then CGκ(S) holds for every stationary subset S of

{α < κ : cf(α) < µ}.
➁ If κ is weakly inaccessible and S ⊆ κ \Reg, then CGκ(S) holds.
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So natural question is: how about the following cases?

➀ κ = µ+ and S ⊆ {α < κ : cf(α) = µ}.
➁ κ is weakly Mahlo and S ⊆ Reg ∩ κ.

Fact 7 (Shelah). ➀ Con(ZFC + ¬CGω1(ω1)).

➁ Con(ZFC + ¬CGκ(S) for some κ = µ+ with µ > ω0 and some

stationary S ⊆ {α < κ : cf(α) = µ}).

Then how about κ is weakly Mahlo and S ⊆ Reg ∩ κ?
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Theorem 1

We prove the following theorem, which shows that indescribability

of κ is not sufficient to ensure that Reg ∩ κ carries a club guessing

sequence.

Theorem 8.Relative to certain large cardinal assumption, it is con-

sistent that κ is Π1
1-indescribable but CGκ(Reg ∩ κ) fails.
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Club guessing ideals

Definition 9 (Shelah). Let S ⊆ κ and c⃗ be a tail club guessing

sequence on S.

TCG(c⃗) := {X ⊆ κ : ∃C club in κ, ∀α ∈ X ∩A, cα ̸⊆∗ C}.
TCG(c⃗) forms a normal ideal over κ.

Question: Can TCG(c⃗) have good properties ?(e.g., saturation,

precipitousness, etc.)
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Fact 10 (Woodin, Ishiu).Relative to certain large cardinal assump-

tion, it is consistent that κ = ω1 and TCG(C⃗) is ω2-saturated for

some tail club guessing sequence c⃗.

Fact 11 (Foreman-Komjáth). Relative to certain large cardinal as-

sumption, it is consistent that κ is a successor caridnal > ω1 and

TCG(C⃗) is κ+-saturated for some tail club guessing sequence c⃗.
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Non-Diamond ideals

Definition 12.NDκ = {X ⊆ κ : ¬♢κ(X)}.
NDκ forms a normal ideal (but not necessary proper) over κ.

We consider the following variation of TCG(C⃗) which is an ana-

logue of NDκ.

Definition 13.NCGκ = {X ⊆ κ : ¬CGκ(X)}.

NCGκ = {X ⊆ κ : X does not carry a tail club guessing}

=
∩

{TCG(c⃗) : c⃗ is a tail club guessing sequence}.
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By Shelah’s theorem,

➀ If κ = µ+, then

NCGκ|{α < κ : cf(α) < µ} = NSκ|{α < κ : cf(α) < µ}.

➁ If κ is weakly inaccessible, then

NCGκ|(κ \Reg) = NSκ|(κ \Reg).

Hence interesting ideals in this context are

NCGκ|{α < κ : cf(α) = µ} with κ = µ+,

and

NCGκ|(κ ∩Reg) with κ being weakly Mahlo.
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Saturation property of ideals

Fact 14. Let S ⊆ κ be such that ♢κ(S) holds. Then there are 2κ-

many almost disjoint stationary subsets of S. In particular NSκ|S is

not 2κ-saturated.

Lemma 15. Let S ⊆ κ be such that ♢κ(S) holds. Then there are

2κ-many almost disjoint NDκ-positive subsets of S. In particular,

➀ NDκ|S is not 2κ-saturated.

➁ NCGκ|S is not 2κ-saturated.

κ: reasonable large cardinals ⇒ ♢κ(Reg ∩ κ)

⇒ NSκ|Reg ∩ κ and NCGκ|(Reg ∩ κ) are not saturated.
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Fact 16 (Jech-Woodin). Relative to a certain large cardinal as-

sumption, it is consistent that κ is Mahlo and NSκ|(Reg ∩ κ) is

κ+-saturated.

Lemma 17. Suppose that κ is Π1
1-indescribable. Then NSκ|(Reg∩κ)

is not κ+-saturated.

A subset X ⊆ κ is Πm
n -indescribable (resp. Σm

n -indescribable) if ∀R ⊆
Vκ, ∀Πm

n -formula (resp. Σm
n -formula) φ over the structure ⟨Vκ,∈, R⟩,

⟨Vκ,∈, R⟩ � φ ⇒ ∃α ∈ X, ⟨Vα,∈, R ∩ Vα⟩ � φ
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Πκ = {X ⊆ κ : X is not Π1
1-indescribable}. Πκ forms a normal ideal

over κ.

Πκ is also reffered as the weakly compact ideal over κ.

Fact 18. ➀ Reg ∩ κ ∈ Π∗
κ.

➁ Let S ⊆ κ be a stationary set in κ. Then the set

{α < κ : S ∩ α is stationary in α}

lies in Π∗
κ.
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Non-saturation of NSκ|(Reg ∩ κ)

Suppose that κ is Π1
1-indescribable and NSκ|(Reg∩κ) is κ+-saturated.

Then

➀ NSκ|(Reg ∩ κ) ⊆ Πκ.

➁ Πκ = NSκ|S for some stationary S ⊆ Reg∩κ, because NSκ|Reg∩κ

is saturated.

➂ {α ∈ S : S ∩ α is stationary in α} ∈ Π∗
κ = (NSκ|S)∗,

➃ However {α ∈ S : S ∩ α is non-stationary in α} is a stationary

subset of S.

This is a contradiction.
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Theorem 2

Hence almost all large cardinals greater than Mahlo refute the

saturation property of NSκ|(Reg ∩ κ).

On the other hand,

Theorem 19. Relative to a certain large cardinal assumption, it is

consistent that

● κ is Π1
1-indescribable,

● CGκ(Reg ∩ κ) holds, but

● NCGκ|(Reg ∩ κ) is κ+-saturated.
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Theorem 3

Theorem 20. Suppose GCH and κ is a measurable cardinal. Then

there exists a forcing extension in which the following hold:

➀ κ is Π1
1-indescribable.

➁ Πκ is κ+-saturated.

Corollary 21.The following are equiconsistent:

➀ ZFC + ∃ measurable cardinal.

➁ ZFC + κ is Π1
1-indescribable + Πκ is κ+-saturated.
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Destroying club guessingness

Fix an inaccessible cardinal κ with 2κ = κ+.

c⃗ = ⟨cα : α < κ⟩ is a club system ⇐⇒ cα ⊆ α is a club in α with

ot(cα) = cf(α) for all α < κ.

For a given club system, we define a poset which forces that the

club system is never club guessing sequence on Reg ∩ κ.

Definition 22. D(c⃗) is the set of all closed bounded subset p of κ

with the property that p ∩ α * cα for every α ∈ Reg ∩ sup(p).
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Lemma 23. D(c⃗) satisfies κ+-c.c., and for every µ < κ, D(c⃗) has a

µ-directed closed dense subset.

Lemma 24. Let G be a (V,D(C⃗))-generic and C =
∪

G. Then C is

a club in κ, and cα * C for every regular α < κ.

By a standard iteration of this poset, we can make any club system

non-club guessing sequence on Reg ∩ κ. So the rest is to show that

it preserves indescribability of κ.
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Choose a sequence ⟨ ˙⃗c(ξ) : ξ < κ+⟩ and < κ-support κ+-stage iter-

ation ⟨Pξ, Q̇η : η < ξ ≤ κ+⟩ so that:

➀ 
Pξ“
˙⃗c(ξ) is a club system”.

➁ 
Pξ“Q̇ξ = D( ˙⃗c(ξ))”.
➂ For every Pκ+-name ˙⃗c of club system, the set

{ξ < κ+ :
Pξ “
˙⃗c(ξ) = ˙⃗c ”}

is cofinal in κ+.

➃ For every ξ ≤ κ+, Pξ satisfies the κ+-c.c. and has µ-closed dense

subset for all µ < κ.

➄ Pκ+ forces that ¬CGκ(Reg ∩ κ).
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Proof of Theorem 1

Assumption 25. Suppose that Pκ+ forces the following:

For every (V,Pκ+)-generic G, there exists an elementary embedding

j : V → M (definable in V [G]) such that

● the critical point of j is κ.

● M is closed under κ-sequence in V [G].

● Pκ+, G ∈ M .

Remark 26. Starting a model with measurable cardinal, we can con-

struct such a model using a reverse Easton support iteration.
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For ξ < κ+ and (V,Pκ+)-generic G, let Gξ = G ∩ Pξ. Gξ is (V,Pξ)-
generic.

Lemma 27. Pκ+ forces that: j : V → M can be extend to j : V [Gξ] →
N for some N ⊇ M and P(κ)M = PN(κ).

Π1
1-indescribability of κ in the generic extension follows from this

Lemma:

Let G be a (V,Pκ+)-generic and work in V [G]. Let R ⊆ Vκ and φ

be a Π1
1-formula over ⟨Vκ,∈, R⟩.
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Suppose ⟨Vκ,∈, R⟩ � φ. Then ∃ξ < κ+,R ∈ V [Gξ]. Because M is

closed under κ-sequence, we have

M � “⟨Vκ,∈, R⟩ � φ”.

By the lemma, we can extend j to j : V [Gξ] → N for some N ⊇ M

with P(κ)M = PN(κ). Then

N � “⟨Vκ,∈, R⟩ � φ and j(R) ∩ Vκ = R”.

By the elementary of j,

V [Gξ] � “∃α < κ, ⟨Vα,∈, R ∩ Vα⟩ � φ”.

so

V [G] � “∃α < κ, ⟨Vα,∈, R ∩ Vα⟩ � φ”.
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Proof of Lemma

Because Pξ adds no new < κ-sequence, we can identify

● ˙⃗cξ as a subset of κ× P(κ)× Pξ.
● p ∈ Pξ as a function with dom(p) ⊆ ξ and |p| < κ.

We use swapping coordinates arguments in Hauser’s paper.
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For A ⊆ κ+, let

P|A = {p|A : p ∈ Pκ+}.

Let π be a partial injection from κ+ to κ+. Then π induces a map

P|dom(π) to P|range(π) such that :

● dom(π(p)) = π“(dom(p)),

● π(p)(ξ) = p(π−1(ξ)) for ξ ∈ dom(p).
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By induction on ξ < κ+, we take a good bijection π so that for

each ξ < κ+,

● ˙⃗c(π(ξ)) = {⟨α, c, π(p)⟩ : ⟨α, c, p⟩ ∈ ˙⃗c(ξ)}.
Then π induces an isomorphism between Pκ+ to Pκ+.

Moreover we can require the following property for π:

● For every p ∈ Pξ and (V,Pξ)-generic Gξ with p ∈ Gξ, there are

q ≤ p such that π(q) = q and j“((π“G)ξ) has a lower bound.
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How to construct π

For (V,Pκ+)-generic G and ξ < λ+, let Cξ be the ξ-th generic club

induced by G.

For ξ < κ+, suppose π∗ = π−1|ξ is defined so that:

● π∗ induces an isomorphism from P|dom(π∗) to Pξ, and

● π∗“G|(dom(π∗)) is (V,Pξ)-generic and j“(π∗“G|(domπ∗)) has a

lower bound.

There are cofinally many ζ < κ+ so that ˙⃗c(ζ) = c⃗(ξ). So we can

choose ξ∗ < κ+ so that ξ1 satisfies :

● ˙⃗c(ξ∗) = ˙⃗c(ξ), and

● Cξ ∈ V [Gξ∗].

Because Cξ∗ is generic over V [Gξ∗], we know that Cξ∗ ̸= j(c⃗(ξ))κ.

Then we let π(ξ∗) = ξ.
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If π can be taken as required, we can prove Lemma:

For given p ∈ Pξ, it is enough to find (V,Pκ+)-generic G with the

extension property.

Take an arbitrary (V,Pκ+)-generic G∗ with p ∈ G∗. Then we can

choose q ≤ p such that π(q) = q and j“((π“G∗)ξ) has a lower bound.

G := π“G∗ is also (V,Pκ+)-generic. Because q = π(q) ∈ G, we

know p ∈ G. Since j“Gξ has a lower bouned, we can exetend j to

j : V [Gξ] → M [j(Gξ)] for some (M, j(Pξ))-generic j(Gξ) with j“Gξ ⊆
j(Gξ). This j and M [j(Gξ)] have requred properties.
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Remarks

Remark 28.Using Hauser’s arguments carefully, we can show that :

Con(ZFC+ ∃Πm
n -indescribable (resp. Σm

n -indescribable) cardinal)

⇒ Con(ZFC+ ∃κ: Πm
n -indescribable (resp. Σm

n -indescribable) and

¬CGκ(Reg ∩ κ)).
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Remark 29.A regular uncountable cardinal κ is strongly unfoldable

if for every λ > κ and every transitive model M of ZFC− with |M | =
κ ∈ M , there exist an transitive model N and elementary embedding

j : M → N such that crit(j) = κ, j(κ) > λ, and Vλ ⊆ N .

Fact 30 (Dz̆amonja-Hamkins). Con(ZFC+ ∃ strongly unfoldable

cardinal)

⇒ Con(ZFC+ ∃κ: strongly unfoldable cardinal and

¬♢κ(Reg ∩ κ)).
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Corollary 31. Con(ZFC+ ∃ strongly unfoldable cardinal)

⇒ Con(ZFC+ ∃κ: strongly unfoldable cardinal and

¬CGκ(Reg ∩ κ)).
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Proof of Theorem 2

Let κ be an inaccesible with 2κ = κ+.

● Q0 is a standard κ-closed poset which add a new club system,

and

● Q1 is a standard κ-closed, κ+-c.c. poset adds new club in κ

which is almost contained in any club lies in the ground model.
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Assumption 32. Suppose that κ is inaccessible, 2κ = κ+, and Q0 ∗
Pκ+ ∗ Q1 forces the following:

For every Q0-generic sequence c⃗, (V [⃗c],Pκ+)-generic G, and (V [⃗c,G],Q1)-

generic club C, there exists an elementary embedding j : V [⃗c] → M

(definable in V [⃗c,G,C]) such that

● the critical point of j is κ.

● M is closed under κ-sequence in V [⃗c,G,C].

● Pκ+ ∈ M and c⃗, G, C ∈ M .

We can construct a model which satisfies this assumption starting

from the ground model with κ being measurable.
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Under the above assumption, using Jech-Woodin’s argument, we

can find a good set A ⊆ κ+ such that P|A is a complete suborder of

Pκ+ and Q0 ∗ P|A forces the following:

● c⃗|(Reg ∩ κ) is a tail club guessing sequence on Reg ∩ κ.

● NCGκ|(Reg ∩ κ) = TCG(c⃗) is κ+-saturated.

Remark 33. For S ∈ NCG+
κ , if NCGκ|S is κ+-saturated then there

is a tail club guessing sequence c⃗ with NCGκ|S = TCG(c⃗).
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Unfortunately, however, Q0∗PA does not force that κ is Π1
1-indescribable

in general.

Proposition 34. Suppose that GCH and κ is a measurable cardinal

with Mitchell order 2. Then there exists a forcing extension in which

the following hold:

● κ is Π1
1-indescribable (actually Π2

1-indescribable).

● NCGκ|(Reg ∩ κ) is κ+-saturated.
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Proposition 35. Suppose that GCH and κ is an ω-strong cardinal.

Then there exists a forcing extension in which the following hold:

● κ is totally indescribable.

● NCGκ|(Reg ∩ κ) is κ+-saturated.
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Strategically closedness

Definition 36. For a poset P and an ordinal α, Γα(P) denotes the

following two players game:

I : p0 p1 · · · pω+1 · · ·
II : q0 q1 · · · qω pω+1 · · ·

Players choose elements of P alternately as p0 ≤ q0 ≤ p1 · · · . But

at each limit stages, only player II moves.

II wins in Γα(P) ⇐⇒ II can take qξ for every ξ < α.

A poset P is α-strategically closed if Player II of Γα(P) has a winning

strategy.
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Definition 37.An ideal I over κ is α-strategically closed if the generic

ultrapower poset ⟨I+,⊆I⟩ associated with I is α-strategically closed.

Lemma 38. If I is a κ-strategically closed normal ideal over κ, then

Πκ ⊆ I. In particular κ is Π1
1-indescribable.
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Theorem 3(revised)

Theorem 39. Suppose GCH and κ is a measurable cardinal. Then

there exists a forcing extension in which the following hold:

➀ κ is Π1
1-indescribable.

➁ Πκ is κ+-saturated and κ-strategically closed.
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Destroying Π1
1-indescribability

For X ⊆ κ, N(X) is the set of all bounded subsets p of κ such that:

➀ sup(p) ∈ p, and

➁ ∀α ∈ X, p ∩ α is non-stationary in α.

Lemma 40. N(X) satisfies the κ+-c.c., and is κ-strategically closed.

Lemma 41. Let G be a (V,N(X))-generic filter and S =
∪

G. Then

S is statioanry in κ and S∩α is non-stationary for every α ∈ X. Hence

X is not Π1
1-indescribable in κ.
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Replacing club shootings in Jech-Woodin’s argument by adding

locally non-reflecting stationary sets, we can construct a model in

which the following hold: There exists a normal ideal I over κ such

that

● I is κ-strategically closed and κ+-saturated.

● For every X ⊆ κ, if X ∈ I then there exists a stationary subset

S of κ such that ∀α ∈ X,S ∩ α is non-stationary.

Then I = Πκ holds, hence it is a required model.
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Remark 42. In our model, κ is Π1
1-indescribable but not Π1

2-indescribable.

Lemma 43. If κ is Π1
n+1-indescribable, then the Π1

n-indescribable

ideal over κ is not κ+-saturated.
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Questions

➀ How is the exact consistency strength of the following state-

ments?

➊ κ is Π1
1-indescribable and NCGκ|(Reg ∩ κ) is κ+-saturated.

➋ κ is Π2
1-indescribable and NCGκ|(Reg ∩ κ) is κ+-saturated.

➌ κ is totally indescribable and NCGκ|(Reg∩ κ) is κ+-saturated.

➁ Can the Π1
2-indescirable ideal be saturated? How about Π1

n-

indescrbable ideal for n > 2?
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