A model with no strongly separable MAD families

Dilip Raghavan

University of Toronto

Workshop on Combinatorial set theory and forcing theory
Kyoto University
November 19, 2009
Outline

1. Background
2. Some connections
3. The Proof
Basic Definitions

- We say that two infinite subsets a and b of ω are *almost disjoint or a.d.* if $a \cap b$ is finite.
- We say that a family $\mathcal{A} \subset [\omega]^\omega$ is *almost disjoint or a.d.* if its members are pairwise almost disjoint.
- A *Maximal Almost Disjoint family, or MAD family* is an infinite a.d. family that is not properly contained in a larger a.d. family.
Basic Definitions

- We say that two infinite subsets a and b of ω are *almost disjoint* or *a.d.* if $a \cap b$ is finite.
- We say that a family $\mathcal{A} \subset [\omega]^\omega$ is *almost disjoint* or *a.d.* if its members are pairwise almost disjoint.
- A *Maximal Almost Disjoint family, or MAD family* is an infinite *a.d.* family that is not properly contained in a larger *a.d.* family.
- If $\mathcal{A} \subset [\omega]^\omega$ is an *a.d.* family, then $\mathcal{I}(\mathcal{A})$ denotes the ideal on ω generated by \mathcal{A}.
Completely Separable MAD families

Definition

An almost disjoint family \mathcal{A} is said to be completely separable if for any $b \in \mathcal{I}^+(\mathcal{A})$, there is an $a \in \mathcal{A}$ with $a \subset b$.

Dilip Raghavan

A model with no strongly separable MAD families
Completely Separable MAD families

Definition

An almost disjoint family \mathcal{A} is said to be completely separable if for any $b \in I^+(\mathcal{A})$, there is an $a \in \mathcal{A}$ with $a \subset b$.

Their existence is connected to the existence of ADRs:

Definition

Given $\mathcal{C} \subset [\omega]^\omega$, we say that a family $\mathcal{A} = \{a_c : c \in \mathcal{C}\} \subset [\omega]^\omega$ is an almost disjoint refinement (ADR) of \mathcal{C} if

1. $\forall c \in \mathcal{C} \ [a_c \subset c]$
2. $\forall c_0, c_1 \in \mathcal{C} \ [c_0 \neq c_1 \implies |a_{c_0} \cap a_{c_1}| < \omega]$.
Completely Separable MAD families

Facts:

- If $\mathcal{C} \subset [\omega]^\omega$ has an ADR, then there is dense ideal \mathcal{I} such that $\mathcal{I} \cap \mathcal{C} = 0$.

- \mathcal{I}^+ has an ADR for every dense \mathcal{I} iff for every dense \mathcal{I}, there is a completely separable $\mathcal{A} \subset \mathcal{I}$.

- If \mathcal{A} is completely separable, then for every $b \in \mathcal{I}^+(\mathcal{A})$, there are \mathfrak{c} many $a \in \mathcal{A}$ such that $a \subset b$.
Completely Separable MAD families

Facts:

- If $\mathcal{C} \subset [\omega]^{\omega}$ has an ADR, then there is dense ideal \mathcal{I} such that $\mathcal{I} \cap \mathcal{C} = 0$.
- \mathcal{I}^+ has an ADR for every dense \mathcal{I} iff for every dense \mathcal{I}, there is a completely separable $\mathcal{A} \subset \mathcal{I}$.
- If \mathcal{A} is completely separable, then for every $b \in \mathcal{I}^+(\mathcal{A})$, there are c many $a \in \mathcal{A}$ such that $a \subset b$.

Question (Erdos-Shelah)

Is there a completely separable MAD family $\mathcal{A} \subset [\omega]^{\omega}$? Is there a completely separable MAD $\mathcal{A} \subset \mathcal{I}$ for each dense \mathcal{I}?
Completely Separable MAD families

- Easy to see that answer is 'yes' if \(\alpha = \omega \)
- (Balcar, Simon, Vojtas): Yes if any one of these holds: \(s = \omega_1, b = \mathfrak{d} \), or \(\mathfrak{d} \leq \alpha \)
- (Balcar, Vojtas): Every non-principal ultrafilter has an ADR.
Completely Separable MAD families

- Easy to see that answer is 'yes' if $\alpha = \sigma$
- (Balcar, Simon, Vojtas): Yes if any one of these holds: $\sigma = \omega_1$, $b = d$, or $d \leq \alpha$
- (Balcar, Vojtas): Every non-principal ultrafilter has an ADR.

Theorem (Shelah [2])

If $\sigma < \aleph_\omega$, then the answer is yes.
There are several possible definitions. Let us rephrase the definition of completely separable MAD families:

Definition

Given an ideal \(I \subset \mathcal{P}(\omega) \), let us say that a set \(A \subset [\omega]^{<\omega} \) is \(I \)-positive if for every \(a \in I \), \(\exists s \in A \ [s \cap a = 0] \).

A set \(a \in \mathcal{P}(\omega) \) is in \(I^+ \) iff \(\{\{n\} : n \in a\} \) is \(I \)-positive.
There are several possible definitions. Let us rephrase the definition of completely separable MAD families:

Definition

Given an ideal $\mathcal{I} \subset \mathcal{P}(\omega)$, let us say that a set $A \subset [\omega]^{<\omega}$ is \mathcal{I}-positive if for every $a \in \mathcal{I}$, $\exists s \in A \ s \cap a = 0$. A set $a \in \mathcal{P}(\omega)$ is in \mathcal{I}^+ iff $\{\{n\} : n \in a\}$ is \mathcal{I}-positive.

So \mathcal{A} is completely separable iff for every $\mathcal{I}(\mathcal{A})$ positive set $A \subset [\omega]^{<\omega}$ consisting entirely of singletons, there are \aleph_1 many $a \in \mathcal{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B = a$.

Dilip Raghavan

A model with no strongly separable MAD families
Strongly Separable MAD families

Steprans-Shelah definition: for every $\mathcal{I}(A)$ positive set $A \subset [\omega]^<\omega$, there are \aleph_1 many $a \in A$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

They applied this to the Calkin Algebra, $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$.

Definition: A masa in a C^* algebra is a maximal, abelian, self adjoint subalgebra (i.e., C^* subalgebra).

Theorem (Steprans and Shelah [3]): If there is a strongly separable MAD family (in their sense), then there is a masa in $\mathcal{C}(H)$ that is generated by its projections, and does not lift to a masa in $\mathcal{B}(H)$.

Dilip Raghavan

A model with no strongly separable MAD families
Strongly Separable MAD families

Steprans-Shelah definition: for every $\mathcal{I}(\mathcal{A})$ positive set $A \subset [\omega]^{<\omega}$, there are \mathfrak{c} many $a \in \mathcal{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

They applied this to the Calkin Algebra, $\mathcal{C}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$.

Definition

A masa in a C^* algebra is a maximal, abelian, self adjoint subalgebra (C^* subalgebra).
Strongly Separable MAD families

Steprans-Shelah definition: for every $\mathcal{I}(\mathcal{A})$ positive set $A \subset [\omega]^{<\omega}$, there are \mathfrak{c} many $a \in \mathcal{A}$ such that there is an infinite pairwise disjoint $B \in [A]^\omega$ so that $\bigcup B \subset a$.

They applied this to the Calkin Algebra, $\mathcal{C}(\mathcal{H}) = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$.

Definition

A masa in a C^* algebra is a maximal, abelian, self adjoint subalgebra (C^* subalgebra).

Theorem (Steprans and Shelah [3])

If there is a strongly separable MAD family (in their sense), then there is a masa in $\mathcal{C}(\mathcal{H})$ that is generated by its projections, and does not lift to a masa in $\mathcal{B}(\mathcal{H})$.

Dilip Raghavan

A model with no strongly separable MAD families
Strongly Separable MAD families

Question (Steprans and Shelah)

Is there a strongly separable MAD family (in their sense)? Is there one with the property that for every \(I(\mathcal{A}) \) positive set \(A \subset [\omega]^{<\omega} \), there is at least one \(a \in \mathcal{A} \) such that there is an infinite pairwise disjoint \(B \in [A]^\omega \) so that \(\bigcup B \subset a \)? Can one be constructed if \(c < \aleph_\omega \)?
Strongly Separable MAD families

Question (Steprans and Shelah)

Is there a strongly separable MAD family (in their sense)? Is there one with the property that for every \(I(\mathcal{A}) \) positive set \(A \subset [\omega]^{<\omega} \), there is at least one \(a \in \mathcal{A} \) such that there is an infinite pairwise disjoint \(B \in [A]^\omega \) so that \(\bigcup B \subset a \)? Can one be constructed if \(\mathfrak{c} < \aleph_\omega \)?

Definition

An a.d. family \(\mathcal{A} \subset [\omega]^\omega \) is strongly separable if for every \(I(\mathcal{A}) \) positive \(A \subset [\omega]^{<\omega} \) there is an \(a \in \mathcal{A} \) such that there is an infinite \(B \in [A]^\omega \) so that \(\bigcup B \subset a \).
Strongly Separable MAD families

Question (Steprans and Shelah)

Is there a strongly separable MAD family (in their sense)? Is there one with the property that for every $\mathcal{I}(\mathcal{A})$ positive set $A \subset [\omega]^{<\omega}$, there is at least one $a \in \mathcal{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$? Can one be constructed if $\mathfrak{c} < \aleph_\omega$?

Definition

An a.d. family $\mathcal{A} \subset [\omega]^{\omega}$ is strongly separable if for every $\mathcal{I}(\mathcal{A})$ positive $A \subset [\omega]^{<\omega}$ there is an $a \in \mathcal{A}$ such that there is an infinite $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

Theorem (R.)

It is consistent that there are no strongly separable MAD families.
Metrizability of countable Fréchet groups

Definition
Recall that a topological space X is Fréchet if whenever a point $p \in X$ is in the closure of a set $A \subset X$, there is a sequence of points in A converging to p.

Question (Malykhin)
Is it consistent that every countable Fréchet group is metrizable?
Metrizability of countable Fréchet groups

Definition
Recall that a topological space X is Fréchet if whenever a point $p \in X$ is in the closure of a set $A \subseteq X$, there is a sequence of points in A converging to p.

Question (Malykhin)
Is it consistent that every countable Fréchet group is metrizable?
Metrizability of countable Fréchet groups

Definition
Recall that a topological space X is Fréchet if whenever a point $p \in X$ is in the closure of a set $A \subset X$, there is a sequence of points in A converging to p.

Question (Malykhin)
Is it consistent that every countable Fréchet group is metrizable?

Definition
Let us say that an ideal \mathcal{I} is Fréchet if for every \mathcal{I}-positive $A \subset [\omega]^<\omega$, there is an infinite pairwise disjoint $B \in [A]^\omega$ so that $\forall a \in \mathcal{I} \ [|a \cap (\bigcup B)| < \omega]$.

Dilip Raghavan

A model with no strongly separable MAD families
If \mathcal{I} is a Frechet ideal that is not countably generated, then we can define a non-metrizable Frechet topology on $\langle [\omega]^{<\omega}, \Delta \rangle$ by stipulating that

$$\{ A \subset [\omega]^{<\omega} : \exists a \in \mathcal{I} \forall s \in [\omega]^{<\omega} \ [s \cap a = 0 \implies s \in A] \}$$

is a neighborhood base at 0.
Metrizability of countable Fréchet groups

- If \mathcal{I} is a Frechet ideal that is not countably generated, then we can define a non-metrizable Fréchet topology on $\langle [\omega]^{<\omega}, \triangle \rangle$ by stipulating that

$$\{ A \subset [\omega]^{<\omega} : \exists a \in \mathcal{I} \forall s \in [\omega]^{<\omega} [s \cap a = 0 \implies s \in A] \}$$

is a neighborhood base at 0.

- The topology is Fréchet because a set $A \subset [\omega]^{<\omega}$ is \mathcal{I} positive iff 0 is in the closure of A. And $A \subset [\omega]^{<\omega}$ has an subsequence converging to 0 iff there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that

$$\forall a \in \mathcal{I} \ [|a \cap (\bigcup B)| < \omega].$$
Metrizability of countable Fréchet groups

Question (Gruenhage and Szeptycki)

Is there an uncountable a.d. family $\mathcal{A} \subset [\omega]^\omega$ such that $I(\mathcal{A})$ is Fréchet?

Is there a Fréchet ideal $I \subset \mathcal{P}(\omega)$ that is not countably generated?

Theorem (Brendle and Hrusak [1])

It is consistent that no I with fewer than \mathfrak{c} generators is Fréchet.

My proof uses a modification of the forcing of Brendle and Hrusak.
The big picture:

- We assume $\diamondsuit(S_1^2)$ in the ground model and we do a finite support iteration of σ-centered forcings of length \aleph_2.

Given a strongly MAD family A in the final model, there is a club of ω_1 limits of ω_2 where the maximality of A reflects.

At a stage α when A is maximal, we do a forcing that adds a set $A \subset [\omega]^\omega$ with the following two properties:

1. At no stage $\beta \geq \alpha$ is there an almost disjoint $A' \supset A$ so that A is not $I(A')$ positive.
2. At no stage $\beta \geq \alpha$ is there an almost disjoint $A' \supset A$ so that there are $a \in A'$ and an infinite set $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

The second requirement was met by the Brendle-Hrusak forcing.
The Proof

The big picture:

- We assume $\diamondsuit(S^2_1)$ in the ground model and we do a finite support iteration of σ-centered forcings of length \aleph_2.
- Given a strongly MAD family \mathcal{A} in the final model, there is a club of ω_1 limits of ω_2 where the maximality of \mathcal{A} reflects.

The second requirement was met by the Brendle-Hrusak forcing.
The Proof

The big picture:

- We assume $\Diamond(S_1^2)$ in the ground model and we do a finite support iteration of σ-centered forcings of length \aleph_2.

- Given a strongly MAD family \mathcal{A} in the final model, there is a club of ω_1 limits of ω_2 where the maximality of \mathcal{A} reflects.

- At a stage α when \mathcal{A} is maximal, we do a forcing that adds a set $A \subset [\omega]^{<\omega}$ with the following two properties:
 - At no stage $\beta \geq \alpha$ is there an almost disjoint $\mathcal{A}' \supset \mathcal{A}$ so that A is not $I(\mathcal{A}')$ positive.
 - At no stage $\beta \geq \alpha$ is there an almost disjoint $\mathcal{A}' \supset \mathcal{A}$ so that there are $a \in \mathcal{A}'$ and infinite set $B \in [A]^\omega$ so that $\bigcup B \subset a$.

The second requirement was met by the Brendle-Hrusak forcing.
The Proof

Suppose \mathcal{A} is a MAD family (something weaker than maximality suffices). Then $I^+(\mathcal{A})$ is a selective coideal. Choose a selective ultrafilter $\mathcal{U} \subset I^+(\mathcal{A})$.

For $s \in \text{FIN} = [\omega]^{\omega} \setminus \{0\}$, cone$(s) = \{ t \in \text{FIN} : s \subset t \}$. We define

$$G = \{ A \subset \text{FIN} : \forall b \in \mathcal{U} \exists s \in \text{FIN}(b) [\text{cone}(s) \subset A] \}.$$

It is easy to check that G is a filter on FIN. The forcing is $\mathbb{P} = \mathbb{L}(G)$.
The Proof

- Suppose \mathcal{A} is a MAD family (something weaker than maximality suffices). Then $I^+(\mathcal{A})$ is a selective coideal. Choose a selective ultrafilter $\mathcal{U} \subset I^+(\mathcal{A})$.

- For $s \in \text{FIN} = [\omega]^{\omega} \setminus \{0\}$, cone $(s) = \{ t \in \text{FIN} : s \subset t \}$. We define

$$G = \{ A \subset \text{FIN} : \forall b \in \mathcal{U} \exists s \in \text{FIN} (b) [\text{cone} (s) \subset A] \}.$$

- It is easy to check that G is a filter on FIN. The forcing is $\mathbb{P} = \mathbb{L}(G)$.

- \mathbb{P} adds a sequence $X : \omega \rightarrow \text{FIN}$. By genericity $\text{ran} (X)$ is $I(\mathcal{A})$ positive and for all $a \in \mathcal{A}$, $\forall \infty n \in \omega [X(n) \not\subset a]$.

- Dilip Raghavan

A model with no strongly separable MAD families
The Proof

We also need to show:

- For all $a_0, \ldots, a_k \in \mathcal{A}$, and for all $b \in \mathbf{V}[G]$ with the property that for any $n \in \omega$, if $X(n) \cap (a_0 \cup \cdots \cup a_k) = 0$, then $b \cap X(n) \neq 0$, there is $a \in \mathcal{A}$ such that $|b \cap a| = \omega$

- For all infinite $B \in [\text{ran}(X)]^\omega$ that is in $\mathbf{V}[G]$, there is $a \in \mathcal{A}$ such that $|a \cap (\bigcup B)| = \omega$.

Dilip Raghavan
A model with no strongly separable MAD families
We also need to show:

- For all \(a_0, \ldots, a_k \in \mathcal{A} \), and for all \(b \in \mathcal{V}[G] \) with the property that for any \(n \in \omega \), if \(X(n) \cap (a_0 \cup \cdots \cup a_k) = 0 \), then \(b \cap X(n) \neq 0 \), there is \(a \in \mathcal{A} \) such that \(|b \cap a| = \omega \).

- For all infinite \(B \in [\text{ran}(X)]^\omega \) that is in \(\mathcal{V}[G] \), there is \(a \in \mathcal{A} \) such that \(|a \cap (\bigcup B)| = \omega \).

- We also need to make sure that these properties are preserved by the iteration. For this we need to strengthen the properties.
The Proof

We also need to show:

- For all $a_0, \ldots, a_k \in \mathcal{A}$, and for all $b \in \mathcal{V}[G]$ with the property that for any $n \in \omega$, if $X(n) \cap (a_0 \cup \cdots \cup a_k) = 0$, then $b \cap X(n) \neq 0$, there is $a \in \mathcal{A}$ such that $|b \cap a| = \omega$.
- For all infinite $B \in [\text{ran}(X)]^\omega$ that is in $\mathcal{V}[G]$, there is $a \in \mathcal{A}$ such that $|a \cap (\bigcup B)| = \omega$.
- We also need to make sure that these properties are preserved by the iteration. For this we need to strengthen the properties.

Lemma

Suppose $\{\hat{A}_n : n \in \omega\} \subset \mathcal{V}^\mathcal{P}$ so that for each $n \in \omega$, $\models \hat{A}_n \in [\text{ran}(\check{X})]^\omega$. Then there is $a \in \mathcal{A}$ such that for all $n \in \omega$, $\models |a \cap (\bigcup \hat{A}_n)| = \omega$.

Dilip Raghavan
A model with no strongly separable MAD families
The Proof

Lemma

Let \(\{\hat{a}_n : n \in \omega\} \subset \mathbf{V}^P \) and let \(a_0, \ldots, a_k \in \mathcal{A} \). Assume that for all \(n, m \in \omega \),
\[
\models \hat{X}(m) \cap (a_0 \cup \cdots \cup a_k) = 0 \implies \hat{X}(m) \cap \hat{a}_n \neq 0.
\]
Then there is \(a \in \mathcal{A} \setminus \{a_0, \ldots, a_k\} \) such that for all \(n \in \omega \), \(\models |a \cap \hat{a}_n| = \omega \).
The Proof

Lemma

Let \(\{\dot{a}_n : n \in \omega\} \subset V^P \) and let \(a_0, \ldots, a_k \in \mathcal{A} \). Assume that for all \(n, m \in \omega \),
\[
\models \dot{X}(m) \cap (a_0 \cup \cdots \cup a_k) = 0 \implies \dot{X}(m) \cap \dot{a}_n \neq 0.
\]
Then there is \(a \in \mathcal{A} \setminus \{a_0, \ldots, a_k\} \) such that for all \(n \in \omega \),
\[
\models \left| a \cap \dot{a}_n \right| = \omega.
\]

The proof uses Ramsey theory.

Lemma

Let \(F : \text{FIN} \to \omega \) such that for every \(s \in \text{FIN} \), \(F(s) \in s \). Then there is a set \(b \in [\omega]^{\omega} \) such that either (1) or (2) holds:

1. \(\forall s \in \text{FIN} \left(b \right) \forall c \in [b/s]^{\omega} \exists t \sqsupset c \left[t \neq 0 \land F(s \cup t) \in t \right] \)
2. \(\forall c \in [b]^{\omega} \exists s \sqsupset c \left[s \neq 0 \land \forall t \in [b/s]^{\omega} \left[F(s \cup t \in s) \right] \right] \).
The Proof

Put $b = \omega \setminus (a_0 \cup \cdots \cup a_k) \in \mathcal{U}$.
Put \(b = \omega \setminus \left(a_0 \cup \cdots \cup a_k \right) \in \mathcal{U} \).

Fix \(\sigma \in (\text{FIN})^{<\omega} \) and \(n \in \omega \). We may define a function
\[
F_{\langle \sigma, n \rangle} : \text{FIN}(b) \to b
\]
by \(F_{\langle \sigma, n \rangle}(s) \) is the least \(k \in s \) so that
\[
\neg \exists q \in \mathcal{P} \left[\text{stem}(q) = \sigma \vdash \langle s \rangle \land q \downarrow k \notin \hat{a}_n \right]
\]
The Proof

- Put \(b = \omega \setminus (a_0 \cup \cdots \cup a_k) \in \mathcal{U} \).
- Fix \(\sigma \in (\text{FIN})^{<\omega} \) and \(n \in \omega \). We may define a function \(F_{\langle \sigma, n \rangle} : \text{FIN} \{b\} \rightarrow b \) by \(F_{\langle \sigma, n \rangle}(s) \) is the least \(k \in s \) so that \(\neg \exists q \in \mathcal{P} \left[\text{stem}(q) = \sigma \cap \langle s \rangle \wedge q \vDash k \notin \hat{A}_n \right] \).
- We can find \(b_{\langle \sigma, n \rangle} \in \mathcal{U} \cap [b]^\omega \) which satisfies either (1) or (2).
- There is \(a \in \mathcal{A} \setminus \{a_0, \ldots, a_k\} \) so that \(\forall \langle \sigma, n \rangle \left[|a \cap b_{\langle \sigma, n \rangle}| = \omega \right] \). This is the \(a \) we want.
Put $b = \omega \setminus (a_0 \cup \cdots \cup a_k) \in \mathcal{U}$.

Fix $\sigma \in (\text{FIN})^{<\omega}$ and $n \in \omega$. We may define a function $F_{\langle \sigma, n \rangle} : \text{FIN} (b) \to b$ by $F_{\langle \sigma, n \rangle} (s)$ is the least $k \in s$ so that

$\neg \exists q \in \mathcal{P} [\text{stem} (q) = \sigma \dashv \langle s \rangle \land q \vdash k \notin \hat{a}_n]$.

We can find $b_{\langle \sigma, n \rangle} \in \mathcal{U} \cap [b]^\omega$ which satisfies either (1) or (2).

There is $a \in \mathcal{A} \setminus \{ a_0, \ldots, a_k \}$ so that $\forall \langle \sigma, n \rangle [|a \cap b_{\langle \sigma, n \rangle}| = \omega]$. This is the a we want.

Suppose, for a contradiction, that there is $n \in \omega$, and $p \in \mathcal{P}$ and $m \in \omega$ so that $p \vdash a \cap \hat{a}_n \subset m$. Put $\sigma = \text{stem} (p)$.
A further modification of the approach will prove the consistency of “for every uncountable a.d. family \(\mathcal{A} \), \(\mathcal{I}(\mathcal{A}) \) is not Fréchet”.
Bibliography

