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The Calkin algebra

H = `2(ℵ0): an infinite-dimensional complex Hibert space.

B(H): The algebra of bounded linear operators.
K(H): The ideal of compact operators.
C(H) = B(H)/K(H): The quotient C*-algebra, Calkin algebra.
π : B(H)→ C(H): The quotient map.

Question (Brown–Douglas–Fillmore, 1977)

Are all automorphisms Φ of the Calkin algebra inner?

As usually, Φ is inner if for some u ∈ C(H) we have

Φ(a) = uau∗

for all a.
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Proposition

An automorphism Φ of the Calkin algebra is inner if and only if
there is a *-homomorphism Ψ: B(H)→ B(H) such that the
diagram

B(H)
Ψ //

π

��

B(H)

π

��
C(H)

Φ
// C(H)

commutes.



A rather complete picture

Theorem (Phillips–Weaver, 2006)

CH implies C(H) has 2c automorphisms, (and only c inner
automorphisms).

Proposition (Farah, Geschke 2007)

If d = ℵ1 then C(H) has 2ℵ1 automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Question
What can be said in the case when H is nonseparable?

A sadly incomplete answer will take up today’s and tomorrow’s
lectures.
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Notation and the theorem

`2(κ): a complex Hibert space of character density κ.
Bκ = B(`2(κ)): the algebra of bounded linear operators.
Kκ: The ideal of compact operators.
Cκ = Bκ/Kκ: The Calkin algebra.
π : Bκ → Cκ: The quotient map.

Theorem (Farah–McKenney–Schimmerling, 2009)

Assume MA+TA. Then all automorphisms of Cℵ1 are inner.

We really prove: If all automorphisms of Cℵ0 are inner and MA
holds, then all automorphisms of Cℵ1 are inner.
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A sketch of the proof

A: a C*-algebra.
U(A): the unitary group of A.
Aut(A): the automorphism group of A.
Define a group homorphism

U(A) 3 u 7→ Ad u ∈ Aut(A)

by
(Ad u)(a) = uau∗.

Fact
All automorphisms of A are inner iff u 7→ Ad u is a surjection.
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Reduction to the separable case: Notation

For ξ < ℵ1 let
Bξ = `2(ξ)
Kξ = K(Bξ)
Cξ = Bξ/Kξ

pξ = proj`2(ξ).
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Reduction to the separable case

For a club C ⊆ ℵ1 let

D[C] = {a ∈ Bℵ1 : apξ = pξa for all ξ ∈ C}.

Lemma
Bℵ1 =

⋃
C club

D[C].

Proof.
Pick M ≺ Hc+ and let δ = M ∩ ω1.
If a ∈ M ∩ Bℵ1 then apδ = pδa.
If a ∈ Bℵ1 and Mξ, ξ < ω1, is an ∈-chain of elementary submodels
of Hc+ such that a ∈ M0, then with

C = {Mξ ∩ ℵ1 : ξ < ℵ1}

we have that a ∈ D[C].
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Representations
Fix Φ ∈ Aut(Cℵ1).
Fix Φ∗ : Bℵ1 → Bℵ1 such that

Bℵ1

Φ∗ //

π

��

Bℵ1

π

��
Cℵ1 Φ

// Cℵ1

commutes.

(Note that Φ∗ is only a function; we don’t assume that it is a

*-homomorphism or that it is Borel measurable.)

Then

(essentially)

CΦ = {ξ < ℵ1 : Φ∗(pξ) = pξ}

includes a club.
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Now we use the separable case

For each ξ ∈ CΦ pick vξ such that Ad vξ is a representation of
Φ � Cξ.

Lemma
If there exists u ∈ Bℵ1 such that for all ξ ∈ CΦ we have upξ = vξ,
then Ad u is a representation of Φ.

If each vξ was unique then we would be done. . .
. . . but the truth is more interesting.
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We need to describe the following set:

{w ∈ B(H) : Ad w is a representation of Φ � Cξ}

or rather, for unitaries u, v in B(H), the relation

v ∼ w iff Adπ(u) = Adπ(v).
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A description of ∼ on B(H)

Lemma
For u and v in U(B(H)) we have Ad u = Ad v if and only if u = zv
for some z ∈ C.

Proof.
Fact: Z (B(H)) = C.

We have Ad u ≡ Ad v if and only if uau∗ = vav∗ for all a
if and only if (v∗u)a(u∗v) = a for all a
if and only if (v∗u)a(v∗u)∗ = a for all a
if and only if (v∗u)a = a(v∗u) for all a
if and only if v∗u ∈ Z (B(H)).
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that u − zv is compact.
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Choosing the unitaries

For ℵ0 ≤ ξ pick vξ so that

1. Ad vξ is a representation of Φ � Cξ, and

2. vℵ0 − pℵ0vξ is compact.

Then for all ℵ0 ≤ η < ξ we have that

vη − pηvξ

is compact.
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Let
Xξ = {w ∈ Bξ : w − vξ ∈ Kξ}

considered as a metric space wrt

dξ(u,w) = ‖u − w‖

and let πξη : Xξ → Xη be

πξη(w) = pηwpη.

Fact
T = 〈Xξ, πξη : ω ≤ η < ξ < ω1〉 is a Polish ω1-tree.
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Assume T has an ω1-branch, wξ, for ξ < ω1.

Define w ∈ B(`2(ℵ1)) by

w(x) = lim
ξ→ω1

wξ(x)

Then Adπ(w) implements Φ.
So we may assume T has no ω1-branches.
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πξη(waw∗) = pηwaw∗pη.

Lemma

1. Each T (a) is a Polish ω1-tree.

2. T (a) has an ω1-branch, defined by Φ∗(a).

We add a generic a ∈ Bℵ1 such that T (a) has no ω1-branches.
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Adding a generic operator

Consider the forcing PZ with conditions p = (Fp,Mp), where
Fp ⊆ Z is finite and Mp is a matrix over Q + iQ indexed by
Fp × Fp such that ‖Mp‖ < 1.

Let p ≤ q iff Fp ⊇ Fq and Mp extends Mq.

Lemma
If Z is countable then PZ is ccc.

(PZ is essentially adding a Cohen real to the unit ball of B(`2(Z ))
in the weak operator topology.)



Adding a generic operator

Consider the forcing PZ with conditions p = (Fp,Mp), where
Fp ⊆ Z is finite and Mp is a matrix over Q + iQ indexed by
Fp × Fp such that ‖Mp‖ < 1.
Let p ≤ q iff Fp ⊇ Fq and Mp extends Mq.

Lemma
If Z is countable then PZ is ccc.

(PZ is essentially adding a Cohen real to the unit ball of B(`2(Z ))
in the weak operator topology.)



Adding a generic operator

Consider the forcing PZ with conditions p = (Fp,Mp), where
Fp ⊆ Z is finite and Mp is a matrix over Q + iQ indexed by
Fp × Fp such that ‖Mp‖ < 1.
Let p ≤ q iff Fp ⊇ Fq and Mp extends Mq.

Lemma
If Z is countable then PZ is ccc.

(PZ is essentially adding a Cohen real to the unit ball of B(`2(Z ))
in the weak operator topology.)



Adding a generic operator

Consider the forcing PZ with conditions p = (Fp,Mp), where
Fp ⊆ Z is finite and Mp is a matrix over Q + iQ indexed by
Fp × Fp such that ‖Mp‖ < 1.
Let p ≤ q iff Fp ⊇ Fq and Mp extends Mq.

Lemma
If Z is countable then PZ is ccc.

(PZ is essentially adding a Cohen real to the unit ball of B(`2(Z ))
in the weak operator topology.)



Bad news

and good news

Pℵ1 collapses ℵ1.
Let P be the finite support product of ℵ1 copies of Pℵ0 .
Then P is ccc and it adds a generic element a to D[CΦ].

Lemma
If T has no cofinal branch, then P forces that T (a) has no cofinal
branch.
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Putting it all together

Let ε > 0 and Q be a ccc forcing that ε-specializes a subtree of
T (g).

Applying MA to P ∗ Q̇, find g ∈ Bℵ1 such that T (a) has (cofinal)
ε-special subtree.

Lemma
If T (a) has a cofinal branch then every cofinal subtree of T (g) has
a cofinal branch.

Proof.
T (a) is coherent because Kℵ1 is the closure of finite rank operators
(see the next slide).

Since this is a contradiction, we conclude that T has a cofinal
branch, hence Φ is inner.
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Coherent Polish ω1-trees

A Polish ω1-tree T = 〈Xξ, πξη, η < ξ < ω1〉 is coherent

if there is a
set Z such that

1. Xξ ⊆ Z ξ for all ξ,

2. πξη(x) = x � η for x ∈ Xξ and η < ξ < ω1,

3. For all x , y in Xξ and ε > 0 there is a finite F ⊆ ξ such that

inf
y ′

dξ(x , y ′) < ε

with y ′ ∈ Xξ satisfying

{ζ < ξ : y ′(ζ) 6= y(ζ)} ⊆ F .

Lemma
If a coherent Pω1-tree has a cofinal branch, then each one of its
cofinal subtrees has a cofinal branch.
In particular, it cannot have a cofinal special subtree.
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No surprises beyond ℵ1

Theorem (Farah–McKenney–Schimmerling, 2009)

Assume PFA. Then all automorphisms of Cκ are inner, for every
infinite cardinal κ.

The proof involves uniformization of ‘Polish coherent families’
using PFA.

Next time
What we don’t know.
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