All automorphisms of all Calkin algebras
Part I \(\frac{I}{II} \): The introduction

Ilijas Farah

York University

RIMS, Kyoto, November 2009
An automorphism \(\Phi \) of \(\mathcal{P}(\mathbb{N})/\text{Fin} \) is \textit{trivial} if there is \(h: \mathbb{N} \to \mathbb{N} \) such that the diagram

\[
\begin{array}{ccc}
\mathcal{P}(\mathbb{N}) & \overset{X \mapsto h^{-1}(X)}{\longrightarrow} & \mathcal{P}(\mathbb{N}) \\
\downarrow^{\pi_{\text{Fin}}} & & \downarrow^{\pi_{\text{Fin}}} \\
\mathcal{P}(\mathbb{N})/\text{Fin} & \overset{\Phi}{\longrightarrow} & \mathcal{P}(\mathbb{N})/\text{Fin}
\end{array}
\]

commutes.
Rigidity I

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has 2^c automorphisms
Rigidity I

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has 2^c automorphisms and only c of them are trivial.
Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has $2^\mathfrak{c}$ automorphisms and only \mathfrak{c} of them are trivial.

Theorem (Shelah, 1979)

If ZFC is consistent then so is ZFC+‘All automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are trivial.’
Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has $2^\mathfrak{c}$ automorphisms and only \mathfrak{c} of them are trivial.

Theorem (Shelah–Steprāns, 1989)

PFA implies ‘All automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are trivial.’
Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has $2^\mathfrak{c}$ automorphisms and only \mathfrak{c} of them are trivial.

Theorem (Velickovic, 1989)

$TA + MA$ implies ‘All automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are trivial.’
Rigidity I

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/\text{Fin}$ has $2^\mathfrak{c}$ automorphisms and only \mathfrak{c} of them are trivial.

Theorem (Velickovic, 1989)

TA+MA implies ‘All automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are trivial.’

TA:= Todorcevic’s Axiom (aka OCA)

Assume X is a separable metric space and $K \subseteq [X]^2$ is open. Then either there is an uncountable $Y \subseteq X$ such that $[Y]^2 \subseteq K$ or $X = \bigcup_{n<\omega} X_n$ so that $[X_n]^2 \cap K = \emptyset$ for all n.
Rigidity beyond \aleph_0

Theorem (Velickovic, 1989)

$TA + MA$ implies all automorphisms of $P(\aleph_1)/\text{Fin}$ are trivial.
Rigidity beyond \aleph_0

Theorem (Velickovic, 1989)

TA + MA implies all automorphisms of $\mathcal{P}(\aleph_1)/\text{Fin}$ are trivial. PFA implies all automorphisms of $\mathcal{P}(\kappa)/\text{Fin}$ are trivial, for every infinite cardinal κ.
Theorem (Shelah, 1979)
If ZFC is consistent then so is ZFC+'every autohomeomorphism of $\beta \aleph_0 \setminus \aleph_0$ has an extension to a continuous self-map of $\beta \aleph_0$.

Theorem (Farah, 1998)
TA+MA implies that if X is a 0-dimensional locally compact Polish space then every autohomeomorphism of $\beta X \setminus X$ has an extension to a continuous self-map of βX.
Stone duality

Boolean algebra \(\mathcal{P}(\mathbb{N}) \) \(\leftrightarrow \) Topological space \(\beta\mathbb{N} \)

\(\mathcal{P}(\mathbb{N}/\text{Fin}) \) \(\leftrightarrow \) \(\beta\mathbb{N} \setminus \mathbb{N} \)

Theorem (Shelah, 1979)

If ZFC is consistent then so is ZFC + ‘every autohomeomorphism of \(\beta\mathbb{N} \setminus \mathbb{N} \) has an extension to a continuous self-map of \(\beta\mathbb{N} \).
Stone duality

\[
\begin{array}{ccc}
\text{Boolean algebra} & \longleftrightarrow & \text{Topological space} \\
\mathcal{P}(\mathbb{N}) & \longleftrightarrow & \beta\mathbb{N} \\
\mathcal{P}(\mathbb{N}/\text{Fin}) & \longleftrightarrow & \beta\mathbb{N} \setminus \mathbb{N}
\end{array}
\]

Theorem (Shelah, 1979)

If ZFC is consistent then so is ZFC+‘every autohomeomorphism of \(\beta\mathbb{N} \setminus \mathbb{N} \) has an extension to a continuous self-map of \(\beta\mathbb{N} \).

Theorem (Farah, 1998)

TA+MA implies that if \(X \) is a 0-dimensional locally compact Polish space then every autohomeomorphism of \(\beta X \setminus X \) has an extension to a continuous self-map of \(\beta X \).
More rigidity

Conjecture (Farah, 2000)

PFA implies that all isomorphisms $\Phi: P(\mathbb{N})/\mathcal{I} \to P(\mathbb{N})/\mathcal{J}$ *are trivial, whenever* \mathcal{I} *and* \mathcal{J} *are analytic ideals.*
Conjecture (Farah, 2000)

PFA implies that all isomorphisms $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \rightarrow \mathcal{P}(\mathbb{N})/\mathcal{J}$ are trivial, whenever \mathcal{I} and \mathcal{J} are analytic ideals.

Theorem (Farah, 1997–2004)

Confirmed the conjecture for many ideals, including all nonpathological ideals.
More rigidity

Conjecture (Farah, 2000)

PFA implies that all isomorphisms $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ are trivial, whenever \mathcal{I} and \mathcal{J} are analytic ideals.

Theorem (Farah, 1997–2004)

Confirmed the conjecture for many ideals, including all nonpathological ideals.

Corollary

PFA implies that quotients over two nonpathological ideals are isomorphic if and only if the ideals are isomorphic.
Boolean groups

If

If $\mathcal{P}(\mathbb{N}) \xrightarrow{F} \mathcal{P}(\mathbb{N})$ commutes then we say F is a representation of Φ.
Boolean groups

If

\[
\begin{array}{c}
P(\mathbb{N}) \xrightarrow{\pi_{\text{Fin}}} P(\mathbb{N}) \\
\downarrow \pi_{\text{Fin}} \quad \quad \quad \quad \quad \quad \quad \downarrow \pi_{\text{Fin}}
\end{array}
\]

\[
\begin{array}{c}
P(\mathbb{N})/\text{Fin} \xrightarrow{\Phi} P(\mathbb{N})/\text{Fin} \\
\downarrow \quad \quad \quad \quad \quad \quad \quad \downarrow
\end{array}
\]

commutes then we say \(F \) is a representation of \(\Phi \).

\[(P(\mathbb{N}), \Delta) \cong (\mathbb{Z}/2\mathbb{Z})^\mathbb{N} \]
Boolean groups

If

\[
\begin{array}{c}
P(\mathbb{N}) \xrightarrow{F} P(\mathbb{N}) \\
& \downarrow \pi_{\text{Fin}} \quad \downarrow \pi_{\text{Fin}} \\
\mathcal{P}(\mathbb{N})/\text{Fin} \xrightarrow{\Phi} \mathcal{P}(\mathbb{N})/\text{Fin}
\end{array}
\]

commutes then we say \(F \) is a representation of \(\Phi \).

\((\mathcal{P}(\mathbb{N}), \Delta) \cong (\mathbb{Z}/2\mathbb{Z})^\mathbb{N}\)

A group isomorphism \(\Phi: \mathcal{P}(\mathbb{N})/I \rightarrow \mathcal{P}(\mathbb{N})/J \) is trivial if it has a representation that is a group homomorphism.
Theorem (Farah, 2000)

Every group isomorphism $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ that has a Borel-measurable representation is trivial whenever \mathcal{J} is a nonpathological ideal.
Theorem (Farah, 2000)

Every group isomorphism $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \rightarrow \mathcal{P}(\mathbb{N})/\mathcal{J}$ that has a Borel-measurable representation is trivial whenever \mathcal{J} is a nonpathological ideal.

Lemma

If \mathcal{I} is a proper analytic ideal then $\mathcal{P}(\mathbb{N})/\mathcal{I} \cong \mathcal{P}(\mathbb{N})$ (as a group).
Theorem (Farah, 2000)

Every group isomorphism $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ that has a Borel-measurable representation is trivial whenever \mathcal{J} is a nonpathological ideal.

Lemma

If \mathcal{I} is a proper analytic ideal then $\mathcal{P}(\mathbb{N})/\mathcal{I} \cong \mathcal{P}(\mathbb{N})$ (as a group).

Proof.
Both are \mathbb{F}_2-vector spaces of dimension 2^{\aleph_0}.
Gelfand–Naimark–Segal duality

For a compact Hausdorff space X let $C(X)$ be the C^*-algebra of all continuous complex-valued functions on X.
Gelfand–Naimark–Segal duality

For a compact Hausdorff space X let $C(X)$ be the C*-algebra of all continuous complex-valued functions on X.

\[
\begin{align*}
\beta \mathbb{N} & \leftrightarrow \quad C(\beta \mathbb{N}) \\
\beta \mathbb{N} \setminus \mathbb{N} & \leftrightarrow \quad C(\beta \mathbb{N} \setminus \mathbb{N})
\end{align*}
\]
For a compact Hausdorff space X let $C(X)$ be the C*-algebra of all continuous complex-valued functions on X.

\[\beta \mathbb{N} \leftrightarrow C(\beta \mathbb{N}) \]
\[\beta \mathbb{N} \setminus \mathbb{N} \leftrightarrow C(\beta \mathbb{N} \setminus \mathbb{N}) \]

Theorem (Shelah, 1979)

If ZFC is consistent then so is ‘all automorphisms of $C(\beta \mathbb{N} \setminus \mathbb{N})$ are trivial.’
The Calkin algebra

\[H = \ell_2(\aleph_0) \]: an infinite-dimensional complex Hilbert space.
\[\mathcal{B}(H) \]: The algebra of bounded linear operators.
\[\mathcal{K}(H) \]: The ideal of compact operators.
\[\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H) \]: Quotient C*-algebra, the so-called *Calkin algebra.*

Question (Brown–Douglas–Fillmore, 1977)

Are all automorphisms \(\Phi \) of the Calkin algebra inner?

As usually, \(\Phi \) is *inner* if for some \(u \in \mathcal{C}(H) \) we have \(\Phi(a) = uau^* \) for all \(a \).
The Calkin algebra

$H = \ell_2(\mathbb{N}_0)$: an infinite-dimensional complex Hilbert space.
$\mathcal{B}(H)$: The algebra of bounded linear operators.
$\mathcal{K}(H)$: The ideal of compact operators.
$\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$: Quotient C*-algebra, the so-called Calkin algebra.

Question (Brown–Douglas–Fillmore, 1977)
Are all automorphisms Φ of the Calkin algebra inner?
The Calkin algebra

\(H = \ell_2(\mathbb{N}_0) \): an infinite-dimensional complex Hilbert space.
\(\mathcal{B}(H) \): The algebra of bounded linear operators.
\(\mathcal{K}(H) \): The ideal of compact operators.
\(\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H) \): Quotient C*-algebra, the so-called Calkin algebra.

Question (Brown–Douglas–Fillmore, 1977)

Are all automorphisms \(\Phi \) of the Calkin algebra inner?

As usually, \(\Phi \) is *inner* if for some \(u \in \mathcal{C}(H) \) we have

\[
\Phi(a) = uau^*
\]

for all \(a \).
Theorem (Phillips–Weaver, 2006)

CH implies $\mathcal{C}(H)$ has 2^c automorphisms, (and only c inner automorphisms).

Proposition (Farah, Geschke 2007)

If $d = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of $\mathcal{C}(H)$ are inner.

Question

What can be said in the case when H is nonseparable?

Answer

All kinds of things but not enough.
Theorem (Phillips–Weaver, 2006)

CH implies $C(H)$ has 2^c automorphisms, (and only c inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $C(H)$ has 2^{\aleph_1} automorphisms.
Theorem (Phillips–Weaver, 2006)

CH implies $C(H)$ has $2^\mathfrak{c}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $C(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of $C(H)$ are inner.
Theorem (Phillips–Weaver, 2006)

CH implies $C(H)$ has 2^c automorphisms, (and only c inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{o} = \aleph_1$ then $C(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of $C(H)$ are inner.

Question

What can be said in the case when H is nonseparable?
Theorem (Phillips–Weaver, 2006)
CH implies $\mathcal{C}(H)$ has 2^c automorphisms, (and only c inner automorphisms).

Proposition (Farah, Geschke 2007)
If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)
TA implies all automorphisms of $\mathcal{C}(H)$ are inner.

Question
What can be said in the case when H is nonseparable?

Answer
All kinds of things
Theorem (Phillips–Weaver, 2006)

CH implies $\mathcal{C}(H)$ has 2^c automorphisms, (and only c inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of $\mathcal{C}(H)$ are inner.

Question

What can be said in the case when H is nonseparable?

Answer

All kinds of things but not enough.