All automorphisms of all Calkin algebras
Part I: Polish Aronzajn trees

Ilijas Farah

York University

RIMS, Kyoto, November 2009
Aronszajn trees

Definition
An ω_1-tree
Aronszajn trees

Definition
An ω_1-tree is a sequence X_ξ, $\xi < \omega_1$ of countable sets and commuting surjections for $\eta < \xi$

$$\pi_{\xi \eta} : X_\xi \to X_\eta.$$
Aronszajn trees

Definition

An ω_1-tree is a sequence X_ξ, $\xi < \omega_1$ of countable sets and commuting surjections for $\eta < \xi$

$$\pi_{\xi\eta} : X_\xi \to X_\eta.$$

An ω_1-tree is *Aronszajn* if

$$\lim_{\xi<\omega_1} X_\xi = \emptyset.$$
Aronszajn trees

Definition

An ω_1-tree is a sequence X_ξ, $\xi < \omega_1$ of countable sets and commuting surjections for $\eta < \xi$

$$\pi_{\xi \eta} : X_\xi \to X_\eta.$$

An ω_1-tree is Aronszajn if

$$\lim_{\xi < \omega_1} X_\xi = \emptyset.$$

An ω_1-tree is special if there exist antichains A_n, for $n < \omega$, such that

$$\bigcup_{\xi < \omega_1} X_\xi = \bigcup_{n < \omega_1} A_n.$$
Definition

A *Polish ω_1-tree* is a sequence (X_ξ, d_ξ), $\xi < \omega_1$ of Polish spaces and commuting surjective contractions for $\eta < \xi$

$$\pi_{\xi\eta}: X_\xi \to X_\eta.$$
Definition

A *Polish ω_1-tree* is a sequence (X_ξ, d_ξ), $\xi < \omega_1$ of Polish spaces and commuting surjective contractions for $\eta < \xi$

$$\pi_{\xi \eta}: X_\xi \to X_\eta.$$

A Polish ω_1-tree is a *Polish Aronszajn tree* (PA-tree) if

$$\lim_{\xi < \omega_1} X_\xi = \emptyset.$$
Special PA-trees

Problem

What is the right definition of a ‘special PA-tree?’
Special PA-trees

Problem

What is the right definition of a ‘special PA-tree?’

On a $\text{P}\omega_1$-tree (X_ξ, d_ξ), $\xi < \omega_1$ define a pseudo-metric

$$d(x, y) = d_\eta(\pi_{\xi\eta}(x), y)$$

if $x \in X_\xi$, $y \in X_\eta$ and $\xi \geq \eta$.

Some $A \subseteq \bigcup \xi X_\xi$ is an ϵ-antichain if $d(x, y) > \epsilon$ for $x \neq y$ in A.

Problem

What is the right definition of a ‘special PA-tree?’

On a $\text{P} \omega_1$-tree (X_ξ, d_ξ), $\xi < \omega_1$ define a pseudo-metric

$$d(x, y) = d_\eta(\pi_{\xi \eta}(x), y)$$

if $x \in X_\xi$, $y \in X_\eta$ and $\xi \geq \eta$.

Some $\mathcal{A} \subseteq \bigcup_\xi X_\xi$ is an ε-antichain if $d(x, y) > \varepsilon$ for $x \neq y$ in \mathcal{A}.
Definition
A P_{ω_1}-tree is ε-special if there are ε-antichains A_n, for $n \in \mathbb{N}$, such that $(\bigcup_n A_n) \cap X_\xi$ is dense in X_ξ for each $\xi < \omega_1$.
Definition
A P_{ω_1}-tree is ε-special if there are ε-antichains A_n, for $n \in \mathbb{N}$, such that $(\bigcup_n A_n) \cap X_\xi$ is dense in X_ξ for each $\xi < \omega_1$.

Lemma
If a PA-tree is ε-special then it has no cofinal branches.
Fix a PA-tree T:

$$X_\xi, \text{ for } \xi < \omega_1 \text{ and } \pi_{\xi\eta} : X_\xi \to X_\eta \text{ for } \omega_1 > \xi \geq \eta.$$

Fix $\varepsilon > 0$.
Fix a PA-tree T:

$$X_\xi, \text{ for } \xi < \omega_1 \text{ and } \pi_{\xi\eta} : X_\xi \rightarrow X_\eta \text{ for } \omega_1 > \xi \geq \eta.$$

Fix $\varepsilon > 0$. Some $B = \{x_\xi : x < \omega_1\}$ is an ε-branch of T if
MA and ε-special trees

Fix a PA-tree T:

$$X_\xi, \text{ for } \xi < \omega_1 \text{ and } \pi_{\xi \eta} : X_\xi \to X_\eta \text{ for } \omega_1 > \xi \geq \eta.$$

Fix $\varepsilon > 0$. Some $B = \{x_\xi : x < \omega_1\}$ is an ε-branch of T if

1. $x_\xi \in X_\xi$ for all ξ, and
Fix a PA-tree T:

$$X_\xi, \text{ for } \xi < \omega_1 \text{ and } \pi_{\xi \eta}: X_\xi \to X_\eta \text{ for } \omega_1 > \xi \geq \eta.$$

Fix $\varepsilon > 0$.
Some $B = \{x_\xi : x < \omega_1\}$ is an ε-branch of T if

1. $x_\xi \in X_\xi$ for all ξ, and
2. $d(x_\eta, x_\xi) < \varepsilon$ for all $\xi > \eta$.

Lemma

A P_{ω_1}-tree T either has an ε-branch or a ccc forcing adds an $\varepsilon/2$-antichain.
The key lemma

Lemma

A P_{ω_1}-tree T either has an ε-branch or a ccc forcing adds an $\varepsilon/2$-antichain.

Pf. Fix a countable dense $Z_\xi \subseteq X_\xi$ for each ξ. Let

$$\mathbb{P} = \{ p \in \bigcup_{\xi} Z_\xi : p \text{ is a finite } \varepsilon/2\text{-antichain} \}$$

ordered by $p \leq q$ iff $p \supseteq q$.
Lemma
A P_{ω_1}-tree T either has an ε-branch or a ccc forcing adds an $\varepsilon/2$-antichain.

Pf. Fix a countable dense $Z_\xi \subseteq X_\xi$ for each ξ. Let

$$P = \{ p \in \bigcup_\xi Z_\xi : p \text{ is a finite } \varepsilon/2\text{-antichain} \}$$

ordered by $p \leq q$ iff $p \supseteq q$.
We prove that is T has no ε-branches then P is powerfully ccc, i.e., $P^{<\aleph_0}$ is ccc.
Fix p_ξ, for $\xi < \omega_1$, in \mathbb{P}. We may assume

$$p_\xi = p \cup r_\xi$$

and that for some n

$$r_\xi = \{x_\xi^0, \ldots x_\xi^{n-1}\}.$$
Proving \mathbb{P} is (powerfully) ccc

Fix p_ξ, for $\xi < \omega_1$, in \mathbb{P}. We may assume

$$p_\xi = p \cup r_\xi$$

and that for some n

$$r_\xi = \{x_\xi^0, \ldots x_\xi^{n-1}\}.$$

Fix a uniform ultrafilter \mathcal{U} on ω_1.
For each ξ fix $A_\xi \in \mathcal{U}$ such that for some $s_\xi : n^2 \to 2$

all $\eta \in A_\xi$ and all $(i, j) \in n^2$ we have

$$d(x^i_\xi, x^j_\eta) < \frac{\varepsilon}{2} \text{ iff } s_\xi(i, j) = 0.$$
Still proving \mathbb{P} is (powerfully) ccc

For each ξ fix $A_\xi \in \mathcal{U}$ such that for some $s_\xi : n^2 \to 2$ all $\eta \in A_\xi$ and all $(i, j) \in n^2$ we have

$$d(x^i_\xi, x^j_\eta) < \frac{\varepsilon}{2} \text{ iff } s_\xi(i, j) = 0.$$

Fix $A \in \mathcal{U}$ and s such that for all $\xi \in A$ we have $s_\xi = s$.
Case 1: \(s(i, j) = 0 \) for some \(i \) and \(j \).
Case 1: \(s(i, j) = 0 \) for some \(i \) and \(j \).
For \(\xi < \eta \) in \(A \) we have (using any \(\zeta \in A_\xi \cap A_\eta \))

\[
d(x_\xi^i, x_\eta^i) \leq d(\xi^i, \eta^j) + d(\eta^j, \xi^i) < \varepsilon
\]

therefore \(\{x_\xi^i : \xi \in A\} \) defines an \(\varepsilon \)-branch.
Case 1: $s(i, j) = 0$ for some i and j. For $\xi < \eta$ in A we have (using any $\zeta \in A_\xi \cap A_\eta$)

$$d(x^i_\xi, x^i_\eta) \leq d(\xi^i, x^j_\eta) + d(x^j_\eta, x^i_\xi) < \varepsilon$$

therefore $\{x^i_\xi: \xi \in A\}$ defines an ε-branch.

Case 2: $s(i, j) = 1$ for all i, j. Then p_ξ, for $\xi \in A$, is linked hence P is ccc. The same proof shows that P is powerfully ccc.
Case 1: $s(i,j) = 0$ for some i and j.
For $\xi < \eta$ in A we have (using any $\zeta \in A_\xi \cap A_\eta$)

$$d(x^i_\xi, x^i_\eta) \leq d(\xi^i, x^j_\eta) + d(x^j_\eta, x^i_\xi) < \varepsilon$$

therefore $\{x^i_\xi : \xi \in A\}$ defines an ε-branch.

Case 2: $s(i,j) = 1$ for all i, j.
Then p_ξ, for $\xi \in A$, is linked hence \mathbb{P} is ccc.
Case 1: $s(i, j) = 0$ for some i and j.
For $\xi < \eta$ in A we have (using any $\zeta \in A_\xi \cap A_\eta$)

$$d(x^i_\xi, x^i_\eta) \leq d(\xi^i, x^j_\eta) + d(x^j_\eta, x^i_\xi) < \varepsilon$$

therefore $\{x^i_\xi : \xi \in A\}$ defines an ε-branch.

Case 2: $s(i, j) = 1$ for all i, j.
Then p_ξ, for $\xi \in A$, is linked hence P is ccc.
The same proof shows that P is powerfully ccc. \square
Case 1: $s(i, j) = 0$ for some i and j.
For $\xi < \eta$ in A we have (using any $\zeta \in A_\xi \cap A_\eta$)

$$d(x_\xi^i, x_\eta^i) \leq d(\xi^i, x_\eta^j) + d(x_\eta^j, x_\xi^i) < \varepsilon$$

therefore $\{x_\xi^i: \xi \in A\}$ defines an ε-branch.

Case 2: $s(i, j) = 1$ for all i, j.
Then p_ξ, for $\xi \in A$, is linked hence \mathbb{P} is ccc.
The same proof shows that \mathbb{P} is powerfully ccc. □
Lemma

MA implies that if a P_{ω_1}-tree has no ε-branches for $\varepsilon > 0$ then it is $\varepsilon/2$-special.
Lemma
MA implies that if a P_{ω_1}-tree has no ε-branches for $\varepsilon > 0$ then it is $\varepsilon/2$-special.

Lemma
If a P_{ω_1}-tree is ε-special then it has no $\varepsilon/2$-branches.
We need more key lemmas

Lemma

There exists a PA-tree that has an \(\varepsilon \)-branch for all \(\varepsilon > 0 \) but no branches.
We need more key lemmas

Lemma
There exists a PA-tree that has an ε-branch for all $\varepsilon > 0$ but no branches.
This tree is even special.
A sequence Y_ξ, $\xi < \omega_1$ is a subtree of a $P\omega_1$-tree $T = \langle X_\xi, \pi_{\xi \eta}\rangle$ if

1. $Y_\xi \subseteq X_\xi$ for all ξ and
2. $\pi_{\xi \eta}[Y_\xi] \subseteq Y_\eta$.

A sequence $Y_\xi, \xi < \omega_1$ is a subtree of a Pω_1-tree $T = \langle X_\xi, \pi_{\xi\eta} \rangle$ if

1. $Y_\xi \subseteq X_\xi$ for all ξ and
2. $\pi_{\xi\eta}[Y_\xi] \subseteq Y_\eta$.

Lemma

If a Pω_1-tree T is such that every subtree has an ε-branch for every $\varepsilon > 0$, then T has a branch.
Constructing an honest branch

Pf. Pick a $1/2$-branch $\langle x^1_\xi : \xi < \omega_1 \rangle$.
Constructing an honest branch

Pf. Pick a $1/2$-branch $\langle x^1_\xi : \xi < \omega_1 \rangle$.
Let $X^1_\eta \subseteq X_\eta$ be the metric closure of

$$\left\{ \pi_{\xi\eta}(x^1_\xi) : \eta < \xi < \omega_1 \right\}.$$

Then $T^1 = \langle X^1_\eta : \eta < \omega_1 \rangle$, is a subtree of T.
Constructing an honest branch

\textit{Pf.} Pick a $1/2$-branch $\langle x^1_\xi : \xi < \omega_1 \rangle$.
Let $X^1_\eta \subseteq X_\eta$ be the metric closure of

$$\{ \pi_{\xi \eta}(x^1_\xi) : \eta < \xi < \omega_1 \}.$$

Then $T^1 = \langle X^1_\eta : \eta < \omega_1 \rangle$, is a subtree of T.
Pick a $1/4$-branch x^2_ξ, $\xi < \omega_1$, of T^1.

...
Constructing an honest branch

\textbf{Pf.} Pick a 1/2-branch $\langle x^1_\xi : \xi < \omega_1 \rangle$.
Let $X^1_\eta \subseteq X_\eta$ be the metric closure of

$$\{ \pi_{\xi \eta}(x^1_\xi) : \eta < \xi < \omega_1 \}.$$

Then $T^1 = \langle X^1_\eta : \eta < \omega_1 \rangle$, is a subtree of T.

Pick a 1/4-branch x^2_ξ, $\xi < \omega_1$, of T^1.
Let $X^2_\eta \subseteq X^1_\eta$ be the metric closure of

$$\{ \pi_{\xi \eta}(x^2_\xi) : \eta < \xi < \omega_1 \}.$$

Then $T^2 = \langle X^2_\eta : \eta < \omega_1 \rangle$, is a subtree of T.
Constructing an honest branch

\textit{Pf.} Pick a 1/2-branch $\langle x^1_\xi : \xi < \omega_1 \rangle$.
Let $X^1_\eta \subseteq X_\eta$ be the metric closure of

$$\{ \pi_{\xi \eta}(x^1_\xi) : \eta < \xi < \omega_1 \}.$$

Then $T^1 = \langle X^1_\eta : \eta < \omega_1 \rangle$, is a subtree of T.

Pick a 1/4-branch x^2_ξ, $\xi < \omega_1$, of T^1.
Let $X^2_\eta \subseteq X^1_\eta$ be the metric closure of

$$\{ \pi_{\xi \eta}(x^2_\xi) : \eta < \xi < \omega_1 \}.$$

Then $T^2 = \langle X^2_\eta : \eta < \omega_1 \rangle$, is a subtree of T.

Pick a 1/8-branch x^3_ξ, $\xi < \omega_1$, of T^1.
Let $X^3_\eta \subseteq X^2_\eta$ be the metric closure of

$$\{ \pi_{\xi \eta}(x^3_\xi) : \eta < \xi < \omega_1 \}.$$

Then $T^3 = \langle X^3_\eta : \eta < \omega_1 \rangle$, is a subtree of T.
Constructing an honest branch

\textit{Pf.} Pick a 1/2-branch \(\langle x^1_{\xi} : \xi < \omega_1 \rangle \).
Let \(X^1_\eta \subseteq X_\eta \) be the metric closure of
\[
\{ \pi_{\xi\eta}(x^1_{\xi}) : \eta < \xi < \omega_1 \}.
\]
Then \(T^1 = \langle X^1_\eta : \eta < \omega_1 \rangle \), is a subtree of \(T \).

Pick a 1/4-branch \(x^2_{\xi} , \xi < \omega_1 \), of \(T^1 \).
Let \(X^2_\eta \subseteq X^1_\eta \) be the metric closure of
\[
\{ \pi_{\xi\eta}(x^2_{\xi}) : \eta < \xi < \omega_1 \}.
\]
Then \(T^2 = \langle X^2_\eta : \eta < \omega_1 \rangle \), is a subtree of \(T \).

Pick a 1/8-branch \(x^3_{\xi} , \xi < \omega_1 \), of \(T^1 \).
Let \(X^3_\eta \subseteq X^2_\eta \) be the metric closure of
\[
\{ \pi_{\xi\eta}(x^3_{\xi}) : \eta < \xi < \omega_1 \}.
\]
Then \(T^3 = \langle X^3_\eta : \eta < \omega_1 \rangle \), is a subtree of \(T \).

\ldots
For each η the sequence x_ξ^n, for $n < \omega$, is a Cauchy sequence. Then

$$x_\xi = \lim_{n} x_\xi^n$$

defines a cofinal branch in T. □
Proposition

MA implies that every P_{ω_1}-tree T either has a branch or a (cofinal) ε-special subtree for some $\varepsilon > 0$.
Proposition

MA implies that every P_{ω_1}-tree T either has a branch or a (cofinal) ε-special subtree for some $\varepsilon > 0$.

Having an ε-special subtree does not guarantee T has no cofinal branches...
Proposition

MA implies that every P_{ω_1}-tree T either has a branch or a (cofinal) ε-special subtree for some $\varepsilon > 0$.

Having an ε-special subtree does not guarantee T has no cofinal branches.

...unless we assume something extra about T!
An ω_1-tree T is **coherent** if $T \subseteq 2^{\omega_1}$ and for all s and t in T the set
\[\{ \xi < \omega_1 : s(\xi) \neq t(\xi) \} \]
is finite.

(Discrete) coherent trees
An ω_1-tree T is *coherent* if $T \subseteq 2^{\omega_1}$ and for all s and t in T the set

$$\{\xi < \omega_1 : s(\xi) \neq t(\xi)\}$$

is finite.

Lemma

If a coherent ω_1-tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.
An ω_1-tree T is coherent if $T \subseteq 2^{\omega_1}$ and for all s and t in T the set

$$\{\xi < \omega_1 : s(\xi) \neq t(\xi)\}$$

is finite.

Lemma

If a coherent ω_1-tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch. In particular, it cannot have a cofinal special subtree.
(Discrete) coherent trees

An ω_1-tree T is coherent if $T \subseteq 2^{\omega_1}$ and for all s and t in T the set

$$\{\xi < \omega_1 : s(\xi) \neq t(\xi)\}$$

is finite.

Lemma

If a coherent ω_1-tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch. In particular, it cannot have a cofinal special subtree.
Coherent Polish ω_1-trees

A Polish tree $T = \langle X_\xi, \pi_\xi, \eta < \xi < \omega_1 \rangle$ is coherent
Coherent Polish ω_1-trees

A Polish tree $T = \langle X_\xi, \pi_\eta, \eta < \xi < \omega_1 \rangle$ is coherent if there is a set Z such that

1. $X_\xi \subseteq Z^\xi$ for all ξ,
A Polish tree $T = \langle X_\xi, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

1. $X_\xi \subseteq Z^\xi$ for all ξ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_\xi$ and $\eta < \xi < \omega_1$,
Coherent Polish ω_1-trees

A Polish tree $T = \langle X_\xi, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is coherent if there is a set Z such that

1. $X_\xi \subseteq Z^\xi$ for all ξ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_\xi$ and $\eta < \xi < \omega_1$,
3. For all x, y in X_ξ and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_\xi(x, y') < \varepsilon$$
Coherent Polish ω_1-trees

A Polish tree $T = \langle X_\xi, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is coherent if there is a set Z such that

1. $X_\xi \subseteq Z_\xi$ for all ξ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_\xi$ and $\eta < \xi < \omega_1$,
3. For all x, y in X_ξ and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_\xi(x, y') < \varepsilon$$

with $y' \in X_\xi$ satisfying

$$\{ \zeta < \xi : y'((\zeta)) \neq y(\zeta) \} \subseteq F.$$
Coherent Polish ω_1-trees

A Polish tree $T = \langle X_\xi, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

1. $X_\xi \subseteq Z^\xi$ for all ξ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_\xi$ and $\eta < \xi < \omega_1$,
3. For all x, y in X_ξ and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

\[
\inf_{y'} d_\xi(x, y') < \varepsilon
\]

with $y' \in X_\xi$ satisfying

\[
\{ \zeta < \xi : y' (\zeta) \neq y(\zeta) \} \subseteq F.
\]

Lemma

If a coherent $P\omega_1$-tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.
Coherent Polish ω_1-trees

A Polish tree $T = \langle X_\xi, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is coherent if there is a set Z such that

1. $X_\xi \subseteq Z^\xi$ for all ξ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_\xi$ and $\eta < \xi < \omega_1$,
3. For all x, y in X_ξ and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that
 \[\inf_{y'} d_\xi(x, y') < \varepsilon \]
 with $y' \in X_\xi$ satisfying
 \[\{ \zeta < \xi : y'((\zeta)) \neq y(\zeta) \} \subseteq F. \]

Lemma

If a coherent $P\omega_1$-tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.

In particular, it cannot have a cofinal special subtree.
Polish coherent families

Let Λ be a directed set and X_ξ, for $\xi \in \Lambda$ a family of Polish spaces.

Then $\langle X_\xi, \pi_{\xi\eta} \rangle$ is a Polish coherent family.

It is nontrivial if $\lim_{\xi \leftarrow \infty} X_\xi = \emptyset$.

Proposition
Assume PFA. If a Polish coherent family is nontrivial, then for some $\varepsilon > 0$ it has an ε-special ω_1-subtree.
Polish coherent families

Let \(\Lambda \) be a directed set and \(X_\xi \), for \(\xi \in \Lambda \) a family of Polish spaces. For \(\eta < \xi \) in \(\Lambda \) we have a contractive surjection

\[
\pi_{\xi\eta} : X_\xi \to X_\eta.
\]
Polish coherent families

Let Λ be a directed set and X_ξ, for $\xi \in \Lambda$ a family of Polish spaces. For $\eta < \xi$ in Λ we have a contractive surjection

$$\pi_{\xi\eta}: X_\xi \to X_\eta.$$

Then $\langle X_\xi, \pi_{\xi\eta} \rangle$ is a Polish coherent family.
Let Λ be a directed set and X_ξ, for $\xi \in \Lambda$ a family of Polish spaces. For $\eta < \xi$ in Λ we have a contractive surjection

$$\pi_{\xi\eta} : X_\xi \to X_\eta.$$

Then $\langle X_\xi, \pi_{\xi\eta} \rangle$ is a Polish coherent family. It is nontrivial if

$$\lim_{\xi} \left\langle X_\xi \right\rangle = \emptyset.$$

Proposition

Assume PFA. If a Polish coherent family is nontrivial, then for some $\varepsilon > 0$ it has an ε-special ω_1-subtree.