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PFA implies 2% = R,.

All known proofs of this implication use forcing notions that
collapse wo.

Does FA({PP : P proper and cardinal-preserving})
imply 2% = X,? Does even FA({P : P proper, [P| = R41}) imply
2o — Ng?



In the first part of the talk | will isolate a certain subclass I' of
{P : P proper, |P| = X4} and will sketch a proof that
FA(T) + 2% > X, is consistent.



In the first part of the talk | will isolate a certain subclass I' of
{P : P proper, |P| = X4} and will sketch a proof that
FA(T) + 2% > X, is consistent.

FA(T) will be strong enough to imply for example the negation
of Justin Moore’s U and other strong forms of the negation of
Club Guessing.



Notation
If Nis a set such that NNwy € wq, set oy = NN w;y.

Let X be a set. If W C [X] and N is a set, W is an
N—-unbounded subset of [ X]*0 if for every x € N N X there is
some M € Wn N with x € M.

If P is a partial order, P is nice if

(a) conditions in P are functions with domain included in wq,
and

(b) if p, g € P are compatible, then the greatest lower bound r
of p and q exists, dom(r) = dom(p) U dom(q), and
r(v) = p(v) U q(v) for all v € dom(r) (where f(v) =0 if
v ¢ dom(f)).



Notation
If Nis a set such that NNwy € wq, set oy = NN w;y.

Let X be a set. If W C [X] and N is a set, W is an
N—-unbounded subset of [ X]*0 if for every x € N N X there is
some M € Wn N with x € M.

If P is a partial order, P is nice if

(a) conditions in P are functions with domain included in wq,
and

(b) if p, g € P are compatible, then the greatest lower bound r
of p and q exists, dom(r) = dom(p) U dom(q), and
r(v) = p(v) U q(v) for all v € dom(r) (where f(v) = 0 if
v ¢ dom(f)).

Exercise: Every set—forcing for which glb(p, q) exists whenever

p and g are compatible conditions is isomorphic to a nice
forcing.



More notation

Given a nice partial order (P, <), a P—condition p and a set M
such that §y, exists, we say that M is good for piff p | dpy € P
and, letting

X={sePnNM: s<p]dy, Scompatible with p},

(i) X#0,and
(ii) for every s € X thereis some t < s, t € M, such that for all
t <t ift e M,thent € X.



A class of posets
Let P be a nice poset and « an infinite cardinal. P is x—suitable if
there are a binary relation R and a club C C w¢ with the
following properties.

(1) If pR(N, W), then the following conditions hold.

(1.1) N is a countable subset of H(x), W is an N—unbounded
subset of [H(x)]™°, and all members of YW N N are good for

p.

(1.2) If p’ is a P—condition extending p, then there is some
W' C W such that p’ R(N,W').

(1.3) If W C W is N—unbounded, then p R (N, W’).

(1.4) p1dn € N, and for all N" and all W’ with o/ < dp,
pR(N',W')if and only if p | oy R (N, W)



A class of posets

(2) For every p € P and every finite set {(N;, ;) : i < m}
such that

(o) each N; is a countable subset of H(x) containing p,
wh = w, 8y, € C, N; = ZFC*, and

(o) each W; is Nj—unbounded

there is a condition g € P extending p and there are
W C W (i < m) such that g R(N;, W/) for all i < m.



A class of posets

(2) For every p € P and every finite set {(N;, ;) : i < m}
such that

(o) each N; is a countable subset of H(x) containing p,
wh = w, 8y, € C, N; = ZFC*, and

(o) each W; is Nj—unbounded

there is a condition g € P extending p and there are
W C W (i < m) such that g R(N;, W/) for all i < m.

We will say that a nice partial order is absolutely k—suitable if it
is k—suitable in every ground model W containing it and such
that w1W = wiq.
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Let ', denote the class of all absolutely x—suitable posets
consisting of finite functions included in wy x [wq]<¥.
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A class of posets

Let ', denote the class of all absolutely x—suitable posets
consisting of finite functions included in wy x [wq]<¥.

Easy: For all x > wo, ', C Proper.

FA(T): For every P € T, and every collection D of size N4
consisting of dense subsets of P there is a filter G C P such
that GND # ( forall D € D.



One application of FA(T): Q

(Moore) U: There is a sequence (gs : 0 < wy)
such that each g5 : § — w is continuous with respect to the
order topology and such that for every club C C w1 there is
some § € C with gs"“C = w.



One application of FA(T): Q

(Moore) U: There is a sequence (gs : 6 < wy)
such that each g5 : § — w is continuous with respect to the
order topology and such that for every club C C w1 there is
some § € C with gs"“C = w.

(o) Club Guessing implies U.
(o) U preserved by ccc forcing, and in fact by w—proper forcing.

(o) Each of BPFA and MRP implies Q := —0.



Theorem (Moore) U implies the existence of an Aronszajn line
which does not contain any Contryman suborder.



Theorem (Moore) U implies the existence of an Aronszajn line
which does not contain any Contryman suborder.

(Moore):

Does Q imply 2% < N,?



Proposition: For every > wo, FA(T ;) implies Q.



Proposition: For every k > w», FA(T ;) implies Q.

Proof sketch:
Notation: Given X, a set of ordinals, and ¢, an ordinal, set
(o) rank(X,d) = 0 iff § is not a limit point of X, and

(o) rank(X,d) >n
if and only if 0 is a limit of ordinals € such that rank (X, ¢) > 7.



Proposition: For every k > w», FA(T ;) implies Q.

Proof sketch:

Notation: Given X, a set of ordinals, and ¢, an ordinal, set
(o) rank(X,d) = 0 iff § is not a limit point of X, and

(o) rank(X,d) >n

if and only if 0 is a limit of ordinals € such that rank (X, ¢) > 7.

Given a sequence G = (g5 : J < wy) of continuous colourings,
let Pg be the following poset:



Conditions in Pg are pairs p = (f, (ke : £ € D)) satisfying the
following properties:

(1) fis a finite function that can be extended to a normal
function F : w1 — wy.

(2) Forevery ¢ € dom(f), rank(f(&), f(§)) > €.

(3) D C dom(f) and for every ¢ € D,
(3.1) ke < w,
(3.2) gr(e) “range(f) € w\{k:}, and
(3.3) rank({y <f(§) : 9gie)(7) # ke}, 1(8)) = rank(f(¢), £(S))-



Given conditions p. = (f, (k¢
extends py iff

(i) o C A,
(ii) Dy C Dy, and

(iii) k{ = K2 for all ¢ € Dp.

: £ € D)) ePgforee {0,1}, py



Given conditions p. = (£, (k¢ : £ € D.)) € Pg fore € {0,1}, py

extends py iff

(i) fo C A,

(i) Dy C Dy, and

(iii) kg = kg for all £ € Dy.

Easy: If G is Pg—generic and
C = range(J{f : (3k)({f,k) € G)}), then Cis a club of w{ and

for every § € C there is ks € w such that g; “C C w\{ks}.



Pg € T, for every k > wo:



Pg € T, for every k > wo:

(o) We may easily translate Pg into a nice forcing consisting
of finite functions contained in wy x [w1]<¥.

(o) Given p = (f, (ke : £ € D)) € Pg, N C H(x) countable

such that N = ZFC* and dy exists, and given )V an
N—-unbounded set, set

pR(N, W)

if and only if
(a) oy is a fixed point of f,
(b) oy € D, and

(c) forevery M e W, gs,(0m) # Ksy-



Easy to verify:

(1) in the definition of xk—suitable



Let us check (2) in the definition of k—suitable (with C = w1)

[that is:

(2) For every p € P and every finite set {(N;, W;) : i < m}
such that

(a) each N; is a countable subset of H(x) containing p,
Wi = wy, Oy, € C, N; = ZFC*, and

(b) each W;is Ni—unbounded

there is a condition g € P extending p and there are
Wi € W; (i < m) such that g R(N;, W) forall i < m.]



Let p = (f, (ke : £ € D)) € Pg. Let {(N;, W) : i < m} satisfy (a)
and (b).



Let p = (7, (ke : £ € D)) € Pg. Let {(N;, ;) : i < m} satisfy (a)
and (b).

Let (6;);<n be the increasing enumeration of {oy, : i < m}.

Suppose {N; : oy, = do} = {No, Ny, Na}.
Let {ko, ... ks} be 3+ 1 =4 colours not touched by

gs, “range(f).



Let p = (7, (ke : £ € D)) € Pg. Let {(N;, ;) : i < m} satisfy (a)
and (b).

Let (6;);<n be the increasing enumeration of {oy, : i < m}.

Suppose {N; : oy, = do} = {No, Ny, Na}.
Let {ko, ... ks} be 3+ 1 =4 colours not touched by
gs, “range(f).

There is k° € {ko, ... ks} such that, for all i < 3,
Wi ={MeW, : éy # k°} is N—unbounded.

Hence we may make the promise to avoid the colour K in the
colouring gs, -



Now we continue with 44,
and get a colour k' we may avoid in the colouring gs,. And so on.



Now we continue with 44,
and get a colour k' we may avoid in the colouring gs,. And so on.

In the end there is a condition g = (f', (k; : £ € D')), g < p, and
Ni—unbounded W/ C W (i < m) such that

(@) f"has all 9; (j < n) as fixed points and makes the promise
k! at each ¢;, and

(b) gR(N;, W) forall i< m.



Now we continue with 44,
and get a colour k' we may avoid in the colouring gs,. And so on.

In the end there is a condition g = (f', (k; : £ € D')), g < p, and
Ni—unbounded W/ C W (i < m) such that

(@) f"has all 9; (j < n) as fixed points and makes the promise
k! at each ¢;, and

(b) gR(N;, W) forall i< m.

Hence, Pg is (isomorphic to) a forcing in I',..

An application of FA({Pg}) gives now a witness of 2 for G.
O



Given n < w, U, is the following weakening of U:
Op: There is a sequence (gs : 0 < Qq)withgs:0 — n

continuous and such that for every club C C w4 there is some
& € C such that g; (/) N C C § unbounded for each i < n.

UO— ... 204 — 03— 0>



Given n < w, U, is the following weakening of U:

Op: There is a sequence (gs : 0 < Qq)withgs:0 — n
continuous and such that for every club C C w4 there is some
& € C such that g; (/) N C C § unbounded for each i < n.

UO— ... 204 — 03— 0>

Does any FA(T ;) imply =0, for any n < w?



Other applications of FA(T')

Proposition: For every x > ws, FA(T ;) implies:

-VWCG: For every C, if

(@) |C| =R¢yand

(b) forall X € C, X C wy and ot(X) = w,

then there is a club C C wy such that | XN C| < w forall X € C.



Other applications of FA(T')

Proposition: For every k > w», FA(T ;) implies:

-VWCG: For every C, if

(@) |C| =R¢yand

(b) forall X € C, X C wy and ot(X) = w,

then there is a club C C wy such that [X N C| < w for all X e C.

- VWCQG is equivalent to the following statement:

For every C, if

(@) |C| =¥y and
(b) forall X € C, X C wy and X is such that for all nonzero
v < wi, rank(X,~) < v (equivalently, of(X N~) < w?),

then there is a club C C wy such that | XN C| < w forall X € C.



Proposition: For every x > w», FA(T ;) implies Miyamoto’s
Code(even—odd).

Code(even—odd): For every ladder system

(As : 6 € Lim(wq)) and every B C wy there are clubs C, D C wq
such that for every § € D,

(a) if 6 € B, then |C N As| is an even integer, and

(b) if 6 ¢ B, then |Cn Ajs| is an odd integer.



Proposition: For every x > w», FA(T ;) implies Miyamoto’s
Code(even—odd).

Code(even—odd): For every ladder system
(As : 0 € Lim(wy)) and every B C wy there are clubs C, D C w4
such that for every § € D,

(a) if 6 € B, then |C N As| is an even integer, and
(b) if & ¢ B, then |C N As| is an odd integer.

Note: Code(even—odd) implies —WCG.



The main theorem

Theorem 1 (CH) Let « be a cardinal such that 2<* = x and
xM = k. Then there is a partial order P such that

(1) P is proper,
(2) P has the No—chain condition,

(3) P forces
(o) FA(T 1) <cf(x)

(o) 2% =



The main theorem

Theorem 1 (CH) Let « be a cardinal such that 2<* = x and
xM = k. Then there is a partial order P such that

(1) P is proper,
(2) P has the No—chain condition,

(3) P forces
(o) FA(T 1) <cf(x)

() 2% =4
We don't know of interesting consequences of FA(T ) <cf(x)

which do not already follow from FA(T ;) (except for
2% > cf(k)).



Proof sketch

Let ¢ : Kk — H(k) be a bijection.

(¢ exists by 2<% = k.)

Also, let (0, : « < k) be this increasing sequence of regular
cardinals: 6y = (27)*, 6, = (SUPa<~b,)" if v is @ nonzero
limit ordinal, and 6,1 = (2%)".



Proof sketch (continued)

Coherent systems of structures

{N; : i < m} is a coherent systems of structures if

al) m < w and every N; is a countable subset of H(x) such
that (N;, €, N N;) < (H(k), €, ®).

a2) Givendistinct /, /" in m, if on, = dn,» then there is an
isomorphism

wNivN// : (N,'7 e, dN N,) — (N,'/, e, N N,'/)

Furthermore, Wy, v, is the identity on x N N; N N



Proof sketch (continued)

a3) Forall i, jinm,if oy, < dy;, then there is some /' < m such
that 6, = on, and N; € Nj.

a4) Foralli, ', jinm,if N; € N;and éy, = dn, » then there is
some j’ < msuch that Ny = Wy, n, (N;).



Proof sketch (continued)

Our forcing will be the direct limit P, of a sequence
(P, : a < k) of posets such that

(o) P, is a complete suborder of Ps if « < 3 < k, and

(o) a condition g in P, is an a—sequence p together with a
certain system A, of side conditions.



Proof sketch (continued)

Our forcing will be the direct limit P, of a sequence
(P, : a < k) of posets such that

(o) P, is a complete suborder of Ps if o < § < x, and

(o) a condition g in P, is an a—sequence p together with a
certain system A, of side conditions.

Unlike in a usual iteration, p will not consist of names, but of
well-determined objects (finite functions included in
wq X [W1]<w).



Defining (P, : a < k)

Po: Conditions are p = {(N;,0) : i < m} where
{N; : i < m}is a coherent system of structures.

<pis 2.



Defining (P, : a < k) (continued)

Suppose P, defined and suppose conditions in P, are
pairs (p, Ap) with p an a—sequence and A, = {(N, 5;) : i < m}.

Suppose P, has the Ro—chain condition and |P,| = k.



Defining (P, : a < k) (continued)

Suppose P, defined and suppose conditions in P, are
pairs (p, Ap) with p an a—sequence and A, = {(N, 5;) : i < m}.

Suppose P, has the Ro—chain condition and |P,| = k.

By ™ = x we may fix an enumeration Q? (for i < k) of nice
r—suitable partial orders consisting of finite functions included
inwy x [wy]< such that for every P,—name Q for such a poset
there are k—many i < « such that I-p, Q= Qa

We also fix P,—hames R,O‘ and C;’“ (for i < k) such that P,
forces that R and C¢* witness that Q¢ is x—suitable.

Let M,, be the club of all countable elementary substructures
of H(6,) containing (Pg : < «).



Defining (P, : a < k) (continued)
Posi: Conditions are

q=(p"(fi : i€a), {(Ni,Bj) : i <m})
satisfying the following conditions. (We denote
{(N;, 8;) - I < m} by Ag)
b1) Foralli<m, g < min{a+ 1,sup(N; N k)}.
b2) The restriction of q to « is a condition in P,,. This

restriction is defined as q|, := (p, {(N;, 5f*) : i < m});

where 3% = 3 it B; < a+1,and 8¢ = aif B = a + 1.

b3) ais a finite subset of .



Defining (P, : a < k) (continued)

b4) Foreach i € a, f; is a finite function included in wy x [wq]<*
and g/, forces (in P,) that f; € Of.

b5) Forevery N suchthat (N,a+1)c Aganda+ 1€ N, q|a
forces that there is some Wy C W such that

iR (N, W)
forallie an N.

Here, YW denotes the collection of all M such that
(M, ) € A, for some u € G, and such that
M = M* N H(k) for some M* € M,,.



Defining (P, : a < k) (continued)

Given conditions
Qe = (p(ff = i€ ae), {(N,B7) : i <me})

(for e € {0,1}), we will say that g1 <,+1 qo if and only if the
following holds.

01) q1‘a <a qo’a
c2) ap C ay

c3) Foralli € a, ql, forces in P, that f! <. f2.

QO&

c4) Forall i < mq there exists 3; > 3° such that (N°, 3;) € Ag,.



Defining (P, : a < k) (continued)

Suppose a < k is a nonzero limit ordinal.
Po Conditions are g = (p, {(N;, 5;) : i < m}) such that:
d1) pis asequence of length a.

d2) Foralli < m,; < min{a,sup(X;N k)}. (Note that j; is
always less than «, even when o = k.)

d3) For every € < «, the restriction
qle == (p e {(X;,5) : i <m})is acondition in P.; where
B; =piif B <e and 5f =cif i > e.

d4) The set of ¢ < a such that p(¢) # 0 is finite.



Defining (P, : a < k) (continued)

Given conditions g1 = (p1, A1) and go = (po, Ag) in Pa,
g1 <a Qo if and only if:

e) Forevery 8 <7, g1|g <s qo|s- (Notice that
(1, A1) <, (Po, Ao) implies that for every (X;, 6) € Ao
there eX|sts ﬁ, > (3; such that (X,,ﬂ,) €Ayl



Defining (P, : a < k) (continued)

Given conditions g = (p1, A1) and qo = (po, Ag) in Pa,
g1 <a Qo if and only if:

e) Forevery 8 <7, g1|g <s qo|s- (Notice that
(1, A1) <, (Po, Ao) implies that for every (X;, 6) € Ao
there eX|sts ﬁ, > (3; such that (X,,ﬂ,) €Ayl

Notation: If o« < k and q = (p, {(N;, 5j) : i < m}) € P,, we set
Xg={N; : i <mj}.



Main facts about (P, : o < k)

Lemma Leta < 3 <.

If g = (p,Aq) € Pa, 5= (r,As) € Pgand g <, Sla, then
(p~(r | [o, B)), Aq U Ag) is a condition in P extending s.

Therefore, P, can be seen as a complete suborder of Pg.



Main facts about (P, : o < k)

Lemma Leta < 3 <.

If g = (p,Aq) € Pa, 5= (r,As) € Pgand g <, Sla, then
(p~(r | [o, B)), Aq U Ag) is a condition in P extending s.

Therefore, P, can be seen as a complete suborder of Pg.

Lemma For every a < k, P, is No—Knaster.



Lemma Suppose a < k and N* € M,. Then,

(1), forevery g € N* NP, thereis @' <, g such that
(N*NH(k),a) € Ay, and

(2)o forevery q € Py, if (N* N H(k),a) € Ag, then g is
(N*, P,)—generic.



The proof is by induction on «.



The proof is by induction on «.

Proof sketch of (2), in the case a = o + 1:

Let N = N*n H(k). Let A be a maximal antichain of P, in N*.
By the Ro—condition of P, and c¢f(k) > w2, A€ N.

It suffices to show that every g satisfying the hypothesis of (2),
is compatible with some condition in AN N* (= AN N).

By pre—density of A we may assume, without loss of generality,
that g extends some condition g in A.



Claim

For every i € k\N there are ordinals oj < 3; such that

(@) aje Nandg; € (N N)U{x},

(b) aj < i< B, and

(©) [ay, Bi)NN'N N =0 whenever N' € X,\N* is such that
On < ON-

[This is proved using the fact that all W ,, fix x N NN N and are
continuous (for N € Xy with 65; = dy), meaning that

Vi n(€) = sup(Vg  “€) whenever ¢ € N is an ordinal of
countable cofinality.]



Suppose a?\N* = {iy,...in_1}, and for each k < nlet oy < G
be ordinals realizing the above claim for iy.

Let us work in VP~ 1(dl-) By condition b5) in the definition of
P,+1 we know that there is a an N-unbounded Wy C W? such
that £ R7 (N, Wy) for all i € a9 N N.

By an inductive construction (using (1) in the definition of
x—suitable) we may find an N—unbounded YV C Wy such that
fTR? (N, W) for all i € a9 N N and such that each M € W is
good for £7 for every j € a? N M.



Hence, we may find M € N such that

(a) M= M*n H(x) for some M,,

(b) Mcontains A, {N' : € N', (N, ) € Dgn N}, a9 N N*,
f,.q I oy forevery i € a9 N N, ai for every k < n, and [ for
every k < nwith g, < &,

(c) (M,o) € A, for some u € G, and

(d) Mis good for 7 for every i € a9 N N.



For every i € a9 N N let f; be a Q7—condition in M extending
71 6m = 7 | 6y and such that every O7—condition in M
extending f; is compatible with £,



For every i € a9 N N let f; be a Q7—condition in M extending
71 6m = 7 | 6y and such that every O7—condition in M
extending f; is compatible with £,

By extending g below o we may assume that (M, o) € Aq and
that g, decides f; for every i € a“.

The result of replacing £ with glb(f;, £7) in q for every
i € a?n N*is a P, 1—condition.

Hence, by further extending q if necessary we may assume
that every Q7—condition in M* extending 7 | & is compatible
with f,.".



Let now G be a P,—generic filter over the ground model with

qle € G.
By correctness of M*[G] within H(6,)[G] we know that in M*[G]
there is a condition g° satisfying the following conditions.

() g° € Aand q°|, € G.

(i) @@ = (@9 N N)U{ig,...i% 4} with ay < (2 < B for all
k<n.

(iii) Foralli e a? N N*, f7" extends f7 | oy in Q7.

(iv) Forevery N' with o € N',if (N, ) € Agn N or
(N, o) € Age, then there is an N'—unbounded Wy C W,
such that
(o) 91 dn Ry (N, Wy) for all i € (a%\a?) N M with 7 | oy ¢ N,
and
(o) 17 Re (N, Wy forallic a® NN.



(The existence of such a g° is withessed, in _V[G], by q itself. It
is expressed by saying “there is some g° € A” for a suitable
P,—name A € M definable from A, A, N N and £ | dy, for

i€ alnN).



By induction hypothesis, q|, is (M*, P,)—generic. Hence,
M*[G] NV = M*. It follows that g° is in M*.

By extending g below ¢ we may assume that q decides g° and
also that it extends g°|,. The proof in this case will be finished if
we show that g and g° are compatible.



By induction hypothesis, q|, is (M*, P,)—generic. Hence,
M*[G] NV = M*. It follows that g° is in M*.

By extending g below ¢ we may assume that q decides g° and
also that it extends g°|,. The proof in this case will be finished if
we show that g and g° are compatible.

It is not difficult to find £* (for i € a% U {ig, ... i, }) extending it
and/or f,.go (for k < n) for which, in V7-1(dl-) we can verify

condition b5) with respect to all N" such that (N, o) € AgU Age
anda e N'.



By induction hypothesis, q|, is (M*, P,)—generic. Hence,
M*[G] NV = M*. It follows that g° is in M*.

By extending g below ¢ we may assume that q decides g° and
also that it extends g°|,. The proof in this case will be finished if
we show that g and g° are compatible.

It is not difficult to find £* (for i € a% U {ig, ... i, }) extending it
and/or f,.go (for k < n) for which, in V7-1(dl-) we can verify

condition b5) with respect to all N" such that (N, o) € AgU Age
anda e N'.

If 6pr > dn, We use condition (2) (and (1)) in the definition of
rk—suitable.

If o < oy and N' € M* (thatis, (N, 0 + 1) € Age), we use
condition (1) in the definition of k—suitable.



The only potentially problematic case is when §y < dn and
N' e X;\M*. But we are safe also in this case since then
(@ udig,...in }) NN = a%n N'. We apply again (1) in the
definition of k—suitable.

Finally we extend g below o once more to a condition ¢’
deciding f*. Now we amalgamate q" and g° and get a legal
P.—condition (note that in extending g below o we are not
adding new pairs (N',;o + 1) to A).



The only potentially problematic case is when §y < dn and
N' e X;\M*. But we are safe also in this case since then
(@ udig,...in }) NN = a%n N'. We apply again (1) in the
definition of k—suitable.

Finally we extend g below o once more to a condition ¢’
deciding f*. Now we amalgamate q" and g° and get a legal
P.—condition (note that in extending g below o we are not
adding new pairs (N',;o + 1) to A).

This finishes the (very sketchy) proof of the lemma in this case.
]



Given ordinals o < x and i < «, we let G be a P, 1 for the
collection of all f,.q, where g € G,.1, a € Psupp(q), and i € a9.

Lemma _
For every a < x and every i < k, P, forces that G* is a
VP> —generic filter over Q.



Given ordinals o < x and i < «, we let G* be a P, 1 for the
collection of all f,.q, where g € G,.1, a € Psupp(q), and i € a9.

Lemma _
For every a < x and every i < k, P, forces that G* is a
VP=—generic filter over Q.

From the above lemmas it is easy to see by standard
arguments that P, forces FA(Ix) () and 2% = x. [0



Separating consequences of FA(T )
(in conjunction with 2% = R,)

Strong Club Guessing (SCG): There is a stationary set S C wjq
and a ladder system (As : § € S) on S such that for every club
C C wq there exists a club D C C with the property that for
every ¢ in SN D, a final segment of A; is included in C.



Separating consequences of FA(T ;)
(in conjunction with 2% = R,)

Strong Club Guessing (SCG): There is a stationary set S C wjq
and a ladder system (As : § € S) on S such that for every club
C C wq there exists a club D C C with the property that for
every ¢ in SN D, a final segment of A; is included in C.

Note: If there is an SCG—sequence on S, then there is a strong
U—sequence on S: a sequence of continuous functions

g5 : 0 — w (6 € S) such that for every club C C wq, there exists
a club D C C with the property that for every 6 € DN S and
every n € w, there are cofinally many ¢ € Cn ¢ with gs(¢) = n.



Fact: There is a proper poset forcing CH together with the
existence of an SCG(Lim(w1))—sequence.



Fact: There is a proper poset forcing CH together with the
existence of an SCG(Lim(w1))—sequence.

Theorem 2 (CH + strong U) Let « be a cardinal such that
xN = k. Then there is a poset P such that

(1) P is proper and has the R,—chain condition, and
(2) P forces Code(even—odd), U, and 2% = k.



Proof sketch: Let (g5 : 0 € S) be a strong U—sequence. Define
a “streamlined version” of the construction for Theorem 1,
considering only the natural posets with finite conditions for
forcing instances of Code(even—odd). Argue that (gs : 6 € S)
remains a U—sequence in the end.



Another separation

A ladder system A = (A5 : 6 € S) is a strong WCG—sequence
in case for every club C C wq there is a club D C C with the
property that |A; N C| < N forevery 6 € DN S.



Another separation

A ladder system A = (A5 : 6 € S) is a strong WCG—sequence
in case for every club C C wq there is a club D C C with the
property that |A;s N C| < R for every 6 € DN S.

Theorem 3 (CH) Let « be a cardinal such that ™ = x and
2<f = . Suppose A = (As : 0 € S) is a strong
WCG—-sequence with S stationary. Then there exists a proper
forcing notion with the Ro—chain condition and forcing the
following statements.

(1) Ais a WCG-sequence.
(2) -0
(3) 2% =g



Ishiu has separated WCG from U in both directions (and more).
In his models 2% < X,.



Another strong failure of Club Guessing

(Moore): Measuring: For every sequence
(Cs : 6 <wiq) such that each C; is a closed subset of § there is
a club D C w¢ such that for every limit point 6 € D of D,
(a) either a tail of DN ¢ is contained in Cs,
(b) or atail of DN ¢ is disjoint from Cs.



Another strong failure of Club Guessing

(Moore): Measuring: For every sequence
(Cs : 0 < w1q) such that each C;s is a closed subset of ¢ there is
a club D C w¢ such that for every limit point 6 € D of D,

(a) either a tail of DN ¢ is contained in Cs,
(b) or atail of DN ¢ is disjoint from Cs.

(o) Measuring follows from BPFA and also from MRP.

(o) Measuring implies the negation of Weak Club Guessing
and implies —=U» (and hence also —0).



A strong form of Measuring

: Given a cardinal \, Measuring’. , is the following
statement:

For every set C consisting of closed subsets of wy and with

IC| < Athereis a club D C w¢ such that for every limit point
0 € Dof Dand every C € C,

(a) either a tail of DN ¢ is contained in C,
(b) or atail of DN ¢ is disjoint from C.



A strong form of Measuring

: Given a cardinal \, Measuring’. , is the following
statement:

For every set C consisting of closed subsets of wy and with
IC| < Athereis a club D C w¢ such that for every limit point
0 € Dof Dand every C € C,

(a) either a tail of DN ¢ is contained in C,
(b) or atail of DN ¢ is disjoint from C.

Measuring® ,, clearly implies Measuring and -VWCG.

MeasuringZ,, follows from BPFA. Measuring®,, doesn't (note
that Measuring® , implies 2% > \).



Given a cardinal ¢ > wy, say that a forcing notion P is *proper if
for every regular 6 > |trcl(P)|, every elementary substructure N
of H(#) of size u containing P and every p c PN N, if “N C N,
then there is an (N, P)—generic condition g € P extending p.

Note: If Mo =, and PP is a “proper poset, then forcing with P
preserves all stationary sets consisting of ordinals of cofinality .



Given a cardinal ¢ > wy, say that a forcing notion P is *proper if
for every regular 6 > |trcl(P)|, every elementary substructure N
of H(#) of size u containing P and every p c PN N, if “N C N,
then there is an (N, P)—generic condition g € P extending p.

Note: If Mo =, and PP is a “proper poset, then forcing with P
preserves all stationary sets consisting of ordinals of cofinality .

We do not know how to derive Measuring from any “natural”
forcing axiom that we can force together with the continuum
large.



Given a cardinal ¢ > wy, say that a forcing notion P is *proper if
for every regular 6 > |trcl(P)|, every elementary substructure N
of H(#) of size u containing P and every p c PN N, if “N C N,
then there is an (N, P)—generic condition g € P extending p.

Note: If Mo =, and PP is a “proper poset, then forcing with P

preserves all stationary sets consisting of ordinals of cofinality .

We do not know how to derive Measuring from any “natural”
forcing axiom that we can force together with the continuum
large.

However,



Theorem 4 Let A < x be uncountable cardinals such that A is
regular, ;N0 = 1 for all uncountable regular cardinal 1 < ),

2<F = k, and k<* = k. Then there exists a forcing notion P with
the following properties.

(1) P is proper and “proper for every uncountable regular
cardinal © < A

(2) P has the A—chain condition. (From (1) and (2), together
with the assumption that ;o = 1 for every uncountable
regular . < ), it follows that P preserves all cofinalities.)

(8) P forces Measuring” ,.

(4) P forces 2% = .
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