サイエンスカフェ in 静岡 第109話

2016年10月27日

悪魔の物理学

---情報熱力学入門---

本日のメニュー

悪魔のための準備

熱力学・統計力学への超入門

悪魔を考え出す

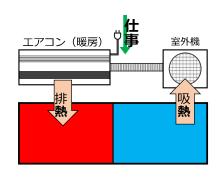
マクスウェルの悪魔のパラドクス

悪魔を理解する

悪魔のパラドクスの解決

悪魔を創り出す

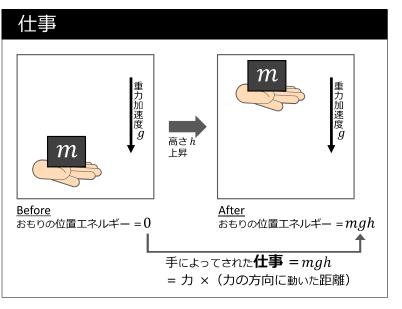
情報熱機関:情報を仕事に変換する

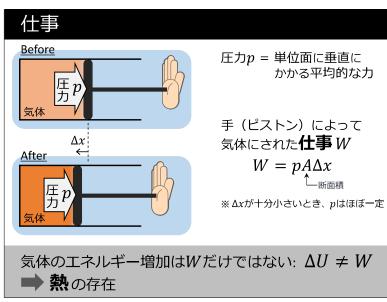

当たり前???

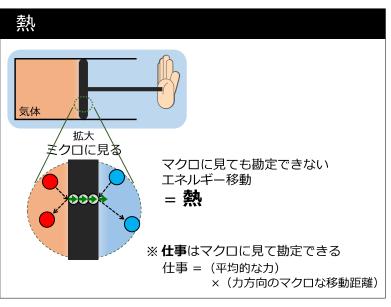
熱は、高温側から低温側に流れる

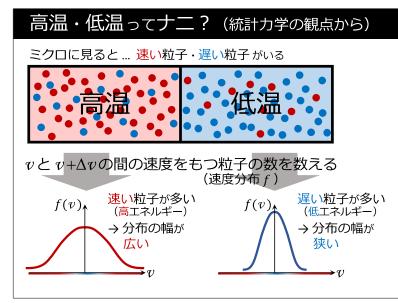
反例 エアコン

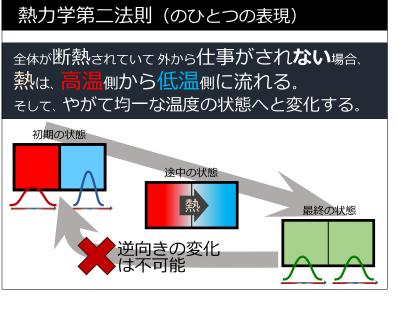
仕事を使うと低温側から高温側に熱を移動可能

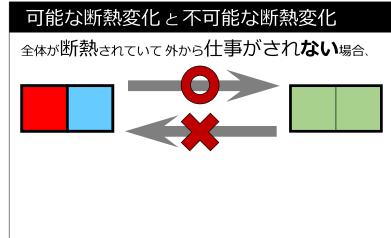

熱力学第二法則(のひとつの表現)


全体が断熱されていて 外から仕事がされ**ない**場合、 熱は、**高温**側から低温側に流れる




仕事とか熱ってナニ?


仕事も**熱**も エネルギー移動の仕方の一種



可能な断熱変化と不可能な断熱変化

全体が断熱されている場合、

状態Y

問 ある二つの状態X,Yが与えられたとき、 それらの間の断熱変化が可能か不可能か を判別できる? (外から仕事はしてもよいとする)

熱力学エントロピー

問 ある二つの状態X,Yが与えられたとき、 それらの間の断熱変化が可能か不可能か を判別できる? (外から仕事はしてもよいとする)

答 YES

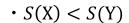
判別するのに便利な物理量が

熱力学エントロピー S

熱力学が言うところによると…

状態Xから状態Yへの 断熱変化が可能

 $S(X) \le S(Y)$


という性質を満たす<u>状態量</u>Sが存在する。 (状態ごとに値が決まる量)

S を **熱力学エントロピー** と呼ぶ。

可能な断熱変化と不可能な断熱変化

問 ある二つの状態X,Yが与えられたとき、 それらの間の断熱変化が可能か不可能か を判別できる? (外から仕事はしてもよいとする)

答 YES S(X) と S(Y) の大小を比較すれば良い

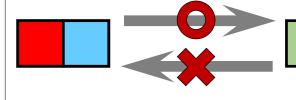
•
$$S(X) > S(Y)$$

•
$$S(X) = S(Y)$$

熱力学が言うところによると…

状態Xから状態Yへの 断熱変化が可能

 $S(X) \leq S(Y)$



断熱変化でエントロピーを減らすことは不可能

(熱力学第二法則のひとつの表現)

話を戻すと ...

全体が断熱されていて外から仕事がされない場合、

S(高温 | 低温)

S(均一な温度)

本日のメニ

悪魔のための準備

熱力学・統計力学への超入門

悪魔を考え出す

マクスウェルの悪魔のパラドクス

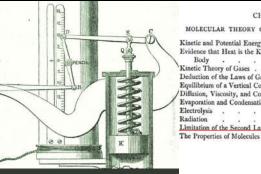
悪魔を理解する

悪魔のパラドクスの解決

悪魔を創り出す

情報熱機関:情報を仕事に変換する

Maxwell先生の登場


James Clerk Maxwell (1831 - 1879)

たくさんの物理学用語に登場

- ・マクスウェル方程式 (電磁気学)
- ・マクスウェル応力 (電磁気学)
- ・マクスウェル模型 (粘弾性体)
- ・マクスウェル関係式 (熱力学)
- ・マクスウェル分布 (統計力学)
- ・マクスウェルの悪魔 (情報熱力学)

Maxwell先生, 悪魔を考え出す @1871年

CHAPTER XXII. MOLECULAR THEORY OF THE CONSTITUTION OF BODII

Kinetic Theory of Gases Deduction of the Laws of Gases Equilibrium of a Vertical Column Diffusion, Viscosity, and Conduction Evaporation and Condensation. Electrolysis Limitation of the Second Law of Thermodynamics

Theory of heat

James Clerk Maxwell

J. C. Maxwell, *Theory of Heat*, (Longmans, 1871) (画像はGoogle Playより)

Maxwell先生, 悪魔を考え出す @1871年

But if we conceive a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are still as essentially finite as our own, would be able to do what is at present impossible to us. ... Now let us suppose that such a vessel is divided into two portions, A and B, by a division in which there is a small hole, and that a being, who can see the individual molecules, opens and closes this hole so as to allow only the swifter molecule pass from A to B, and only the slower ones to pass from B to A. He will thus, without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of thermodynamics.

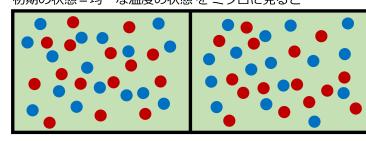
> J. C. Maxwell, Theory of Heat, (Longmans, 1871) Chapter XXII

Maxwell先生, 悪魔を考え出す @1871年

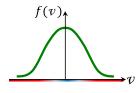
But if we conceive a being whose faculties are so sharpened that he can follow every molecule in its course,

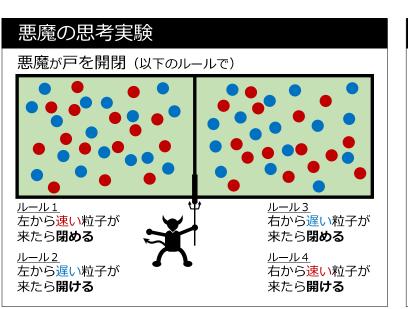
すべての分子の動きを追うことができる 存在がいるとしよう

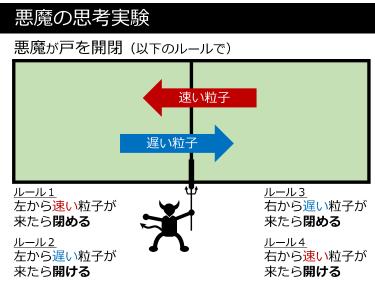
マクスウェルの悪魔と名付けたのは Kelvin (らしい)

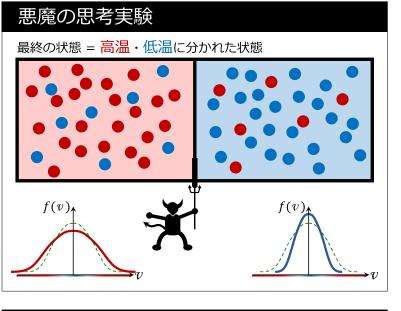

(Maxwell's intelligent demon)

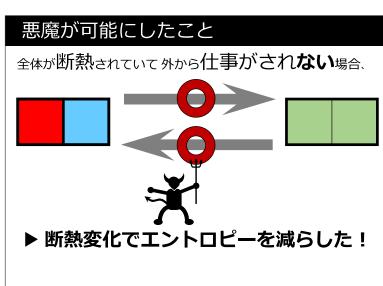
and only the slower ones to pass from B to A. He will thus, without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of thermodynamics.


> J. C. Maxwell, Theory of Heat, (Longmans, 1871) Chapter XXII


悪魔の思考実験


初期の状態 = 均一な温度の状態を ミクロに見ると





マクスウェルの悪魔のパラドクス

悪魔は断熱変化でエントロピーを減らす

矛盾している?

熱力学第二法則(のひとつの表現)

断熱変化でエントロピーを減らすことは不可能

本日のメニュー

悪魔のための準備

熱力学・統計力学への超入門

悪魔を考え出す

マクスウェルの悪魔のパラドクス

悪魔を理解する

悪魔のパラドクスの解決

悪魔を創り出す

情報熱機関:情報を仕事に変換する

悪魔は何をしているのか?

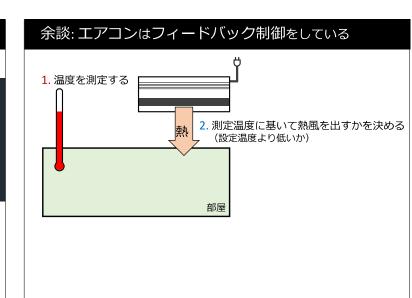
悪魔のルールを振り返る

<u>ルール1</u>

左から速い粒子が右から遅い粒子が来たら 閉める来たら 閉める

<u>ルール3</u>

<u>ルール2</u> <u>ルール4</u>


 左から遅い粒子が
 右から速い粒子が

 来たら開ける
 来たら開ける

1. 粒子の情報を得る ← 測定

2. 情報に基いた操作を行う ← フィードバック

フィードバック制御

悪魔は何をしているのか?

悪魔のルールを振り返る

ルール1 ルール3

左から速い粒子が右から遅い粒子が来たら 閉める来たら 閉める

<u>ルール2</u> <u>ルール4</u>

左から遅い粒子が右から速い粒子が来たら 開ける来たら 開ける

1. 粒子の情報を得る ← 測定

2. 情報に基いた操作を行う ← フィードバック

フィードバック制御

情報ってナニ?

情報ってナニ?

情報理論によると...

情報とはわれわれに何事かを教えてくれるものであり、 われわれの不確実な知識を確実にしてくれるもの

情報の量は、その情報をもらったことによって 知識の不確実さがどのくらい減ったかで計ればよい。

甘利俊一, 情報理論(ちくま学芸文庫, 2011)

※情報の価値については論じない

例:コイントスしたときの情報量

トスする前: オモテゕウラゕ**不確実**

トスした後: どちらが出たか確定 📦 情報を得た

オモテが出たときの情報量

= ウラが出たときの情報量

例: コイントスしたときの情報量

トスする前: オモテゕウラか不確実

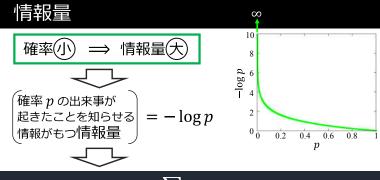
∫オモテが出る確率 = p **∖**ウラが出る確率 = **1 −** *p*

確率(小) ⇒ 不確実さ(大)・

例: p < 1/2 のとき

, オモテが出る不確実さ > ウラが出る不確実さ

トスした後: どちらが出たか確定 📦 情報を得た


確率(小のものが出たときの情報量

> 確率(大)のものが出たときの情報量

例: p < 1/2 のとき

. オモデが出たときの情報量 > ウラが出たときの情報量

熱力学 エントロピー? 情報

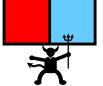
平均的な情報量 H=- $\rightarrow p_k \log p_k$

k番目の出来事が起こる確率

例: コイントス $H = -p \log p - (1-p)\log(1-p)$

熱力学 meets 情報理論

ボルツマンの原理

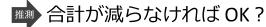

熱力学エントロピー ∝ (平衡状態の) 情報エントロピー $S = k_{\rm B}H$

比例係数(ボルツマン定数)

※歴史的には、ボルツマンの原理が 情報エントロピーより先に現れた

悪魔が可能にしたこと

全体が断熱されていて外から仕事がされない場合、



- 1. 粒子の情報を得る
- 2. 情報に基いた操作を行う

- 断熱変化で
- ・物質の熱力学エントロピーが 減った!
- ・悪魔がもつ情報エントロピーが 増えた!

悪魔のパラドクスの解決?

熱力学

悪魔は断熱変化でエントロピーを減らす

矛盾 なし

熱力学第二法則の拡張

断熱変化でエントロピーを減らすことは不可能

熱力学エントロピーと 情報エントロピーの合計

沙川-上田の定式化

- 1. 粒子の情報を得る
- 2. 情報に基いた操作を行う

$S(X) - S(Y) + k_{\rm B} I_{\rm E} \ge 0$

熱力学エントロピーの変化量

途中で得た相互情報量 (=情報エントロピー @理想極限)

T. Sagawa & M. Ueda, Physical Review Letters, vol. 100, 080403 (2008)

沙川-上田の定式化

- 1. 粒子の情報を得る
- 2. 情報に基いた操作を行う

$S(X) - S(Y) + k_{\rm B}I \ge 0$

熱力学エントロピーが減っても、相互情報量が増えて合計がゼロ以上なら OK!

T. Sagawa & M. Ueda, Physical Review Letters, vol. 100, 080403 (2008)

悪魔のパラドクスの解決

熱力学

悪魔は断熱変化でエントロピーを減らす

熱力学第二法則の拡張

断熱変化でエントロピーを減らすことは不可能

熱力学エントロピーと 相互情報量の合計

熱力学 meets 情報理論, again

熱力学第二法則の拡張

 $S(X) - S(Y) + k_{\rm B}I \ge 0$

情報熱力学 へ

= 情報処理を組み込んだ熱力学

本日のメニュー

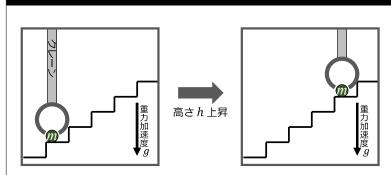
悪魔のための準備

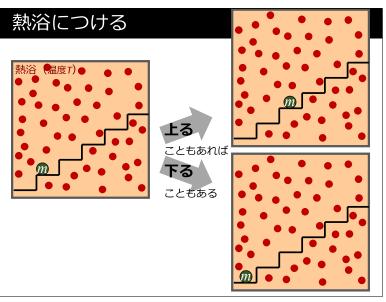
熱力学・統計力学への超入門

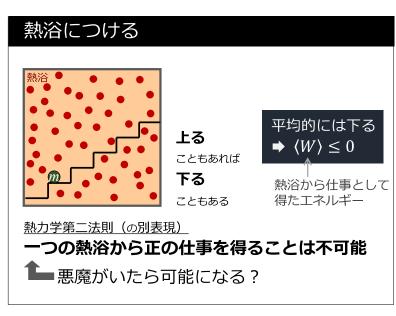
悪魔を考え出す

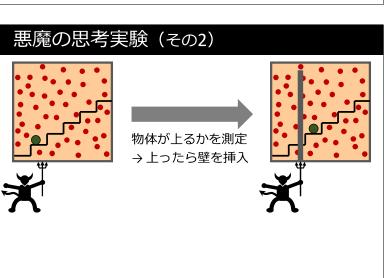
マクスウェルの悪魔のパラドクス

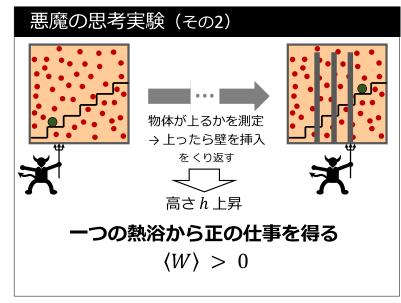
悪魔を理解する

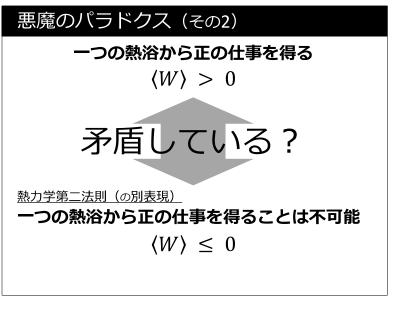

悪魔のパラドクスの解決

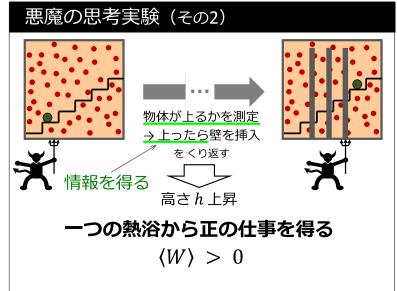

悪魔を創り出す


情報熱機関:情報を仕事に変換する


仕事 (再訪)




物体mが得た位置エネルギー = クレーンがした仕事 = mgh > 0



悪魔のパラドクス (その2) の解決

一つの熱浴から正の仕事を得る

悪魔が情報を得て フィードバックを 行うことで $\langle W \rangle > 0$

矛盾 なし

熱力学第二法則の拡張

一つの熱浴から(熱浴温度)×(相互情報量) より多くの仕事を得ることは不可能

 $\langle W \rangle \leq k_{\rm B} T I$

一つの熱浴から正の仕事を得る

悪魔が情報を得て フィードバックを 行うことで

 $\langle W
angle > 0$ 情報を仕事に変換

実現できるか?

答 できる! → 悪魔 (情報熱機関) を創った

S. Toyabe, et al., Nature Physics vol. 6, 988 (2010)

本日のメニュー

悪魔のための準備

熱力学・統計力学への超入門

悪魔を考え出す

マクスウェルの悪魔のパラドクス

悪魔を理解する

悪魔のパラドクスの解決

悪魔を創り出す

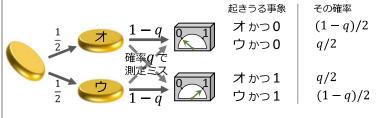
情報熱機関:情報を仕事に変換する

補足: 相互情報量

二つの系の間に相関がある状況を考える

相互情報量 $I = H_A + H_B - H_{AB}$

タイプ Bだけを見たときの 情報エントロピー 情報エントロピー

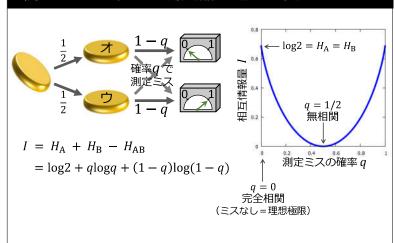

AB全体を見たときの 情報エントロピー

▶ 系Aと系Bの間の相関の強さ(どれだけ関連があるか)を表す

▶ 相互情報量の性質: $0 \leq I \leq H_{A}, H_{B}$ の小さい方

等号は**無相関** のときに成立 等号は**完全相関**(理想極限) のときに成立

例: コイントスを測定器を通して見る



$$H_{AB} = -\frac{1}{2}(1-q)\log\frac{1}{2}(1-q) - \frac{1}{2}q\log\frac{1}{2}q - \frac{1}{2}q\log\frac{1}{2}q - \frac{1}{2}(1-q)\log\frac{1}{2}(1-q)$$

$$H_{\rm A} = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = \log 2$$

$$H_{\rm B} = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = \log 2$$

例: コイントスを測定器を通して見る

