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Conventions

Throughout this talk,
e A forcing means a set-forcing.

e An inner model of ZF(C) means a transitive model M of
ZF(C) such that Ord € M and the pair (M, V) satisfies the
replacement scheme.

e Every definable model is an inner model.
e But inner models are not necessary definable in V.
e V is an inner model of its forcing extension.

)
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Definability of ground models
Theorem (Laver, Woodin)

In every forcing extension V[G] of V, the ground model V is
definable in V[G] with some parameters:
There is a formula ¢(x, y) and p € V[G] such that for every
x € V[G],

x €V < V[G]|E ¢(x,p)



Definability of ground models
Theorem (Laver, Woodin)

In every forcing extension V[G] of V, the ground model V is
definable in V[G] with some parameters:
There is a formula ¢(x, y) and p € V[G] such that for every
x € V[G],

x €V < V[G]|E ¢(x,p)

Actually all ground models are uniformly definable.
Theorem (Fuchs-Hamkins-Reitz)

There is a formula ¢(x, y) such that:
1. Forevery r € V, W, = {x: ¢(x,r)} is a transitive model of
ZFC, and is a ground model of V.
2. For every inner model M C V of ZFC, if M is a ground model
of V, then there is r such that M = W,.
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Covering and approximation

Definition (Hamkins)

Let M be an inner model of ZFC, and  a cardinal.

1. M satisfies the k-covering property if for every x C M N Ord
with |x| < &, there is y € M such that x C y and |y| < k.
2. M satisfies the k-approximation property if whenever
X C MNOzxd, if XNx € M for every x € M with size < &,
then X € M.

(Note: these definitions make sense in ZF)
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Definition (Hamkins)

Let M be an inner model of ZFC, and  a cardinal.

1. M satisfies the k-covering property if for every x C M N Ord
with |x| < &, there is y € M such that x C y and |y| < k.

2. M satisfies the k-approximation property if whenever
X C MNOzxd, if XNx € M for every x € M with size < &,
then X € M.

(Note: these definitions make sense in ZF)

Theorem (Hamkins)

Let M, N be inner models of ZFC, and k a cardinal. If M and N
satisfy the k-covering and the k-approximation properties, and
P(kT)NM=P(kT)N M, then MNP(Ord) = NN P(Ord), in
particular M = N.
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Definable by Covering and approximation

Fact (folklore? (Mitchell?))
Let M C V be an inner model of ZFC. Suppose V = M|G] for

some poset P € M and (M, P)-generic G. Then for every k > |P|,

M satisfies the k-covering and the k-approximation properties.
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Definable by Covering and approximation

Fact (folklore? (Mitchell?))

Let M C V be an inner model of ZFC. Suppose V = M|[G] for
some poset P € M and (M, P)-generic G. Then for every k > |P|,
M satisfies the k-covering and the k-approximation properties.

Corollary

Suppose V = M|[G] for some G C P € M. Let K > |P| and
X = MnNP(kT). Then M is definable as a unique transitive model
N of ZFC such that:

1. N satisfies the x-covering and k-approximation properties.
2. NNP(sT) = X.
3. Pe N and N[G] = V.
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Ground model definability in ZF

Forcing over models of ZF is very useful to construct various
models: e.g., forcing over L(R).

Question

Suppose V is a model of ZF, and V[G] is a forcing extension of V.
Does V is definable in V[G] with parameters?
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Ground model definability in ZF

Forcing over models of ZF is very useful to construct various
models: e.g., forcing over L(R).

Question

Suppose V is a model of ZF, and V[G] is a forcing extension of V.

Does V is definable in V[G] with parameters?

Can we imitate known arguments?
1. In ZF, we can prove that, in V[G], V satisfies the x-covering
property for some large k.
2. However, it is unclear that V satisfies the k-approximation
property for some k.

3. Even if V satisfies the k-covering and the k-approx.
properties, we have no idea how to prove V is a unique model
satisfying the covering and the approximation properties.

6
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Known result

Theorem (Gitman-Johnstone, ZF)

Suppose DC, holds. Then for every poset P with size < k (hence
PP is assumed to be well-orderable), V is definable in V¥ with some
parameters.

Their proof does not need the full AC but a weak AC.
It is still open whether V is always definable in V[G] without AC.
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Main result

In this talk, we show the following partial answers of this question.

Theorem (ZF)

Suppose one of the following holds:
1. There is a poset P which forces the Axiom of Choice, or
2. There are proper class many supercompact cardinals.

Then there is a formula ¢(x, y) such that for every forcing
extension V[G] of V, there is p € V with

x €V < VI[G]E ¢(x,p)

Hence V is definable in V[G]. Actually every ground model is
uniformly definable.
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Corollary (ZF)

1. If V = L(X) for some X, then V is definable in its forcing
extensions.

2. It is consistent that DC,, (or countable choice, or other weak
AC) fails, but V is definable in its forcing extension of V.
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Corollary (ZF)

1. If V = L(X) for some X, then V is definable in its forcing
extensions.

2. It is consistent that DC,, (or countable choice, or other weak
AC) fails, but V is definable in its forcing extension of V.

Assumptions

1. There is a poset P which forces the Axiom of Choice, or

2. There are proper class many supercompact cardinals.

First we prove the theorem under the assumption (1), and next
prove under (2).
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When is AC forceable?

In order to prove main theorem under the assumption (1), we need
a new characterization of “AC is forceable”.

Theorem (Blass, ZF)

The following are equivalent:
1. There is a poset which forces AC.

2. There is a set X such that for every set Y, there is an ordinal
« is a surjection f :ax X = Y.
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Semi-ground

Definition (ZF)

Let M C V be an inner model of ZF.

For a cardinal k, M satisfies the x-global covering property if for
every « and f : @ — Ord, there is F € M such that dom(F) = «,
f(8) € F(B) and |F(B)| < k for B < a.

(Note: F(fB) can be a set of ordinals, hence |F(/)| < k makes
sense.)

M is a semi-ground if M satisfies the Axiom of Choice, and there is
a cardinal k such that M satisfies the k-global covering property.
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Semi-ground

Definition (ZF)

Let M C V be an inner model of ZF.

For a cardinal k, M satisfies the k-global covering property if for
every « and f : @ — Ord, there is F € M such that dom(F) = «,
f(8) € F(B) and |F(B)| < k for B < a.

(Note: F(f) can be a set of ordinals, hence |F(5)| < x makes
sense.)

M is a semi-ground if M satisfies the Axiom of Choice, and there is
a cardinal k such that M satisfies the k-global covering property.

Theorem (Bukovsky, ZFC)

Let M C V be an inner model of ZFC. Then M is a ground model
of V if and only if M satisfies the k-global covering property for
some K.
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Definability of semi-grounds
Proposotion (ZF)

1. If M C V is a semi-ground, then M satisfies the
K-approximation property for some k.

2. Let M and N be inner models of ZFC. Suppose M and N
satisfy the x-global covering property, and
MNP(kT)=NNP(sT). Then M = N.

3. Semi-grounds are uniformly definable: There is a formula
©(x,y) such that:

3.1 Forevery r e V, W, = {x: ¢(x,r)} is a transitive model of
ZFC, and is a semi-ground model of V.

3.2 For every M C V, if M is a semi-ground model of V, then
there is r such that M = W,.

The proofs are the same to one in the context of ZFC; AC in M is
necessary, but AC in V is not.
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New characterization that AC is forceable
Definition (ZF)

Let M C V be an inner model of ZF. For a set X, let M(X) be the
minimal transitive model of ZF with M U {X} C M(X):
M(X) = Ua L(Ma U{X}).
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New characterization that AC is forceable
Definition (ZF)

Let M C V be an inner model of ZF. For a set X, let M(X) be the
minimal transitive model of ZF with M U {X} C M(X):
M(X) = Ua L(Ma U{X}).

Proposotion (ZF)

The following are equivalent:
1. There is a poset which forces AC.
2. There is a semi-ground M and a set X such that V = M(X).

Proof: (2) = (1). Force Coll(w, X), adding a surjection from w
onto X. In VCOH(“’X), X is well-orderable. M satisfies the AC,
hence in V[G], every element of V = M(X) is well-orderable.
Since VCol(w.X) is 3 forcing extension of V, every element of

Vv Coll(w.X) is well-orderable as well.
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Theorem (U., ZFC)

Ground models are downward directed: Suppose M and N are inner
models of ZFC, and ground models of V. Then there is a model
W of ZFC such that W is a common ground model of M and N.

Proof of (1) = (2).

Take a poset P which forces AC. Take V-generic G, H C P which
are mutually generic. Then V[G x H] is a common forcing
extension of V[G] and V[H]. Note that V[G], V[H], and

V[G x H] satisfy AC.

By Solovay's result, we have V[G] N V[H] = V.

V[G] and V[G] are ground models of V[G x H]. Hence there is a
model W of ZFC which is a common ground model of V[G] and
V[H]. Then

W C V[G]N V[H] = V C V[G] = W[G]
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W C V[G]N V[H] = V C V[G] = W[G]

Since W is a semi-ground of V[G] and W C V C V]G], one can
check that W is a semi-ground of V. Then V = W/(X) for some
X by the following Gregoriff's result:

Theorem (Gregoriff, ZF)

Suppose W C V is an inner model of ZF, and suppose
W C V C W[G']. Then W[G'] is a forcing extension of V if and
only if V = W(X) for some X.
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Lemma (ZF)

Suppose AC is forceable. Then for every inner model M C V of
ZF, if M is a ground model of V, then there is a semi-ground W
of V and a set X such that M = W(X).

Proof.

Since V is a forcing extension of M, AC is forceable over M.
Hence there is a semi-ground W of M and a set X such that
M= W(X). W C M C V, hence one can check that W is also a
semi-ground of V. ]
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Uniform definability of ground models

Theorem (ZF)

If AC is forceable, then all ground models are uniformly definable.

Proof.

Let {W, : r € V} be a uniformly definable collection of all
semi-grounds.

Then all ground models are definable as: M C V is a ground
model <= M = W,(X) for some r and X, and there is a poset
P € M and (M, P)-generic G with M[G] = V. O

Corollary

If AC is forceable, then V is definable in its forcing extensions.
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Large cardinals in ZF

Definition (Woodin, ZF)

Let x be an uncountable cardinal.

1. k is inaccessible if for every x € V,, there is no cofinal map
from x into k.
2. K is supercompact if for every a > k, there is 8 > «, a

transitive set N, and an elementary embedding j : Vg — N
such that:

2.1 crit(j) = & and o < j(k).
22 VaN C N.

e Every supercompact cardinal is inaccessible.

e In ZFC, k is inaccessible <= & is inaccessible in the usual
sense, and k is supercompact <= k is supercompact in the
usual sense.
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Norm: coarse measure of sets

In ZF, we can not define the cadinalitiy of a set in the usual sense,
so the covering and the approximation properties do not work well
as intended. To recover it, we define a rough and coarse measure

of sets which will be work in ZF:

Definition (ZF)

For a set x, the norm ||x|| of x is the least ordinal a such that
there is a surjection from V,, onto x.

[|x]] < rank(x).
xSy =[x <yl

[|x|| = ||y|| # there is a bijection f : x — y.

e [f M C V is an inner model of ZF and x € M, then
[IXI1 < [1x][M.
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Norm-covering and approximation

Definition (ZF)
Let M C V be an inner model of ZF, and « an ordinal.
1. M satisfies the a-norm covering property if for every set
x € M with ||x|| < a, there is y € M such that x C y and
IylIY < e
2. M satisfies the a-norm approximation property if whenever
X C M, if XNx € M for every x € M with ||x|| < «, then
X e M.
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Super-inaccessible cardinal

Next, we will define large cardinals which is sufficient to imply a
kind of Lowenheim-Skolem theorem:
Definition (ZF)
An inaccessible cardinal x is super-inaccessible if for every a > &,
A<k, and x € V,, there is 3 > a and M < Vj such that:

1. MNk € k and Vyn, € M.

2. x €M, and N(MNV,)C M.

3. If N is the transitive collapse of M, then N € V,; (hence
IM]] < k).

e Every supercompact cardinal is super-inaccessible.
e In ZFC, every inaccessible cardinal is super-inaccessible.
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Definability of models
Lemma (ZF)

Let My, M1 C V be inner models of ZF, X\ a cardinal, and x > X a
super-inaccessible cardinal. If My and M; satisfy the A-norm
covering and the A\-norm approximation properties, and

My NV, = M NV, then My = M;.

Proof: By the induction on the rank of sets.

Suppose « > k and My NV, = My N V,. We show that: If

x € My NP(V,) with ||x||Me < ), then x € My.

Since & is super-inaccessible, there is 3 > o+ 1 and N < Vj such
that N contains all relevant objects, V(N N V,) C N, and

[|N|| < k. We know x C NN V, N My. By the A-norm approx.
property of My and My, we have NNV, N My € Mg N My. Let N/
be the transitive collapse of NNV, N My € Mo N My. ||N|] < &,
and since V., N My = V., N My, we have

xe€P(INN VN My)NMy=P(NNVyn My) N M.



Covering and approximation of ground models

Lemma (ZF)

Suppose £ is a super-inaccessible cardinal. Suppose V = M|[G] for
some G CP e M. If P e V,, then M satisfies the k-norm covering

and the k-norm approximation properties.
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Covering and approximation of ground models
Lemma (ZF)

Suppose £ is a super-inaccessible cardinal. Suppose V = M|[G] for
some G CP e M. If P e V,, then M satisfies the k-norm covering
and the k-norm approximation properties.

Theorem (ZF)

Suppose there are proper class many super-inaccessible cardinals.
Then all ground models are uniformly definable; If V = M[G] for
some G C P € M, take supercompact cardinals A < x with

P eV, and let X = M N V,. Then M is definable as a unique
model N of ZF such that

1. N satisfies the A-norm covering and the A-approximation
properties,

2. NNV, =X,
3. V = N|[G] for some G CP e N.



Lemma (ZF)

If k is super-inaccessible, and IP € V., then k is super-inaccessible
. P
in V.

Corollary (ZF)

Suppose there are proper class many super-inaccessible cardinals.
Then V is definable in its forcing extensions.
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Remarks

Woodin proved that some fragments of AC are derived from large
cardinals:

Theorem (Woodin, ZF)

1. Suppose k is supercompact. Then Coll(w, < V,;) forces the
dependent choice.

2. Suppose k is a singular cardinal, and a limit of supercompact

cardinals. Then s is regular, and the non-stationary ideal
over kT is kT-complete.
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Remarks

Woodin proved that some fragments of AC are derived from large
cardinals:

Theorem (Woodin, ZF)

1. Suppose k is supercompact. Then Coll(w, < V,;) forces the
dependent choice.

2. Suppose k is a singular cardinal, and a limit of supercompact
cardinals. Then s is regular, and the non-stationary ideal
over kT is kT-complete.

Lemma (ZF)

Supercompact cardinals in Woodin's theorem can be replaced by
super-inaccessible cardinals.



Conjecture (Woodin, ZF)

The Axiom of Choice Conjecture is: Suppose there are many
supercompact cardinals. Then AC is forceable.

e |t is known that The Axiom of Choice Conjecture is true if
V = L(P(Ord)) and Woodin's HOD-Conjecture is provable
from ZFC.

e The Axiom of Choice Conjecture is equivalent to:

Suppose there are many supercompact cardinals. Then V has
a semi-ground W such that V = W(X) for some X.

e If the Axiom of Choice Conjecture is true, then “there are
proper class many supercompact cardinals“ = “AC is
forceable”, hence the second main theorem is immediate from
the first.
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Thank you for your attention!

Reference:

e L. Bukovsky, Characterization of generic extensions of models
of set theory. Fund. Math. 83 (1973), no. 1, 35-46.

e G. Fuchs, J. D. Hamkins, J. Reitz, Set-theoretic geology.
Ann. Pure Appl. Logic 166 (2015), no. 4, 464-501.

e J. D. Hamkins, Extensions with the approximation and cover
properties have no new large cardinals. Fund. Math. 180
(2003), no. 3, 257-277.

e T. Usuba, The downward directed grounds hypothesis and
very large cardinals, submitted.

e H. Woodin, Suitable Extender Models 1, Journal of Math.
Logic, Vol.10 (2010) 101-339.



