Definability of grounds in ZF

Toshimichi Usuba (薄葉 季路)

School of Fundamental Science and Engineering, Waseda University

Dec. 1, 2017 RIMS Workshop on Infinite Combinatorics and Forcing Theory

Conventions

Throughout this talk,

- A forcing means a set-forcing.
- An <u>inner model</u> of ZF(C) means a transitive model M of ZF(C) such that $Ord \subseteq M$ and the pair (M, V) satisfies the replacement scheme.
 - Every definable model is an inner model.
 - But inner models are not necessary definable in V.
 - V is an inner model of its forcing extension.

Definability of ground models

Theorem (Laver, Woodin)

In every forcing extension V[G] of V, the ground model V is definable in V[G] with some parameters: There is a formula $\varphi(x, y)$ and $p \in V[G]$ such that for every $x \in V[G]$,

$$x \in V \iff V[G] \vDash \varphi(x,p)$$

Actually all ground models are uniformly definable.

```
Theorem (Fuchs-Hamkins-Reitz)
```

There is a formula $\varphi(x, y)$ such that:

- 1. For every $r \in V$, $W_r = \{x : \varphi(x, r)\}$ is a transitive model of ZFC, and is a ground model of V.
- 2. For every inner model $M \subseteq V$ of ZFC, if M is a ground model of V, then there is r such that $M = W_r$.

Definability of ground models

Theorem (Laver, Woodin)

In every forcing extension V[G] of V, the ground model V is definable in V[G] with some parameters: There is a formula $\varphi(x, y)$ and $p \in V[G]$ such that for every $x \in V[G]$,

$$x \in V \iff V[G] \vDash \varphi(x,p)$$

Actually all ground models are uniformly definable.

Theorem (Fuchs-Hamkins-Reitz)

There is a formula $\varphi(x, y)$ such that:

- 1. For every $r \in V$, $W_r = \{x : \varphi(x, r)\}$ is a transitive model of ZFC, and is a ground model of V.
- 2. For every inner model $M \subseteq V$ of ZFC, if M is a ground model of V, then there is r such that $M = W_r$.

Covering and approximation

Definition (Hamkins)

Let *M* be an inner model of ZFC, and κ a cardinal.

- 1. *M* satisfies the κ -covering property if for every $x \subseteq M \cap \text{Ord}$ with $|x| < \kappa$, there is $y \in M$ such that $x \subseteq y$ and $|y| < \kappa$.
- 2. *M* satisfies the κ -approximation property if whenever $X \subseteq M \cap \text{Ord}$, if $X \cap x \in M$ for every $x \in M$ with size $< \kappa$, then $X \in M$.

(Note: these definitions make sense in ZF)

Theorem (Hamkins)

Let M, N be inner models of ZFC, and κ a cardinal. If M and N satisfy the κ -covering and the κ -approximation properties, and $\mathcal{P}(\kappa^+) \cap M = \mathcal{P}(\kappa^+) \cap M$, then $M \cap \mathcal{P}(\text{Ord}) = N \cap \mathcal{P}(\text{Ord})$, in particular M = N.

Covering and approximation

Definition (Hamkins)

Let *M* be an inner model of ZFC, and κ a cardinal.

- 1. *M* satisfies the κ -covering property if for every $x \subseteq M \cap \text{Ord}$ with $|x| < \kappa$, there is $y \in M$ such that $x \subseteq y$ and $|y| < \kappa$.
- 2. *M* satisfies the κ -approximation property if whenever $X \subseteq M \cap \text{Ord}$, if $X \cap x \in M$ for every $x \in M$ with size $< \kappa$, then $X \in M$.

(Note: these definitions make sense in ZF)

Theorem (Hamkins)

Let M, N be inner models of ZFC, and κ a cardinal. If M and N satisfy the κ -covering and the κ -approximation properties, and $\mathcal{P}(\kappa^+) \cap M = \mathcal{P}(\kappa^+) \cap M$, then $M \cap \mathcal{P}(\text{Ord}) = N \cap \mathcal{P}(\text{Ord})$, in particular M = N.

Definable by Covering and approximation

Fact (folklore? (Mitchell?))

Let $M \subseteq V$ be an inner model of ZFC. Suppose V = M[G] for some poset $\mathbb{P} \in M$ and (M, \mathbb{P}) -generic G. Then for every $\kappa > |\mathbb{P}|$, M satisfies the κ -covering and the κ -approximation properties.

Corollary

Suppose V = M[G] for some $G \subseteq \mathbb{P} \in M$. Let $\kappa > |\mathbb{P}|$ and $X = M \cap \mathcal{P}(\kappa^+)$. Then M is definable as a unique transitive model N of ZFC such that:

1. N satisfies the κ -covering and κ -approximation properties.

2.
$$N \cap \mathcal{P}(\kappa^+) = X$$
.

3. $\mathbb{P} \in N$ and N[G] = V.

Definable by Covering and approximation

Fact (folklore? (Mitchell?))

Let $M \subseteq V$ be an inner model of ZFC. Suppose V = M[G] for some poset $\mathbb{P} \in M$ and (M, \mathbb{P}) -generic G. Then for every $\kappa > |\mathbb{P}|$, M satisfies the κ -covering and the κ -approximation properties.

Corollary

Suppose V = M[G] for some $G \subseteq \mathbb{P} \in M$. Let $\kappa > |\mathbb{P}|$ and $X = M \cap \mathcal{P}(\kappa^+)$. Then M is definable as a unique transitive model N of ZFC such that:

1. N satisfies the $\kappa\text{-covering}$ and $\kappa\text{-approximation}$ properties.

2.
$$N \cap \mathcal{P}(\kappa^+) = X$$
.

3. $\mathbb{P} \in N$ and N[G] = V.

Ground model definability in ZF

Forcing over models of ZF is very useful to construct various models: e.g., forcing over $L(\mathbb{R})$.

Question

Suppose V is a model of ZF, and V[G] is a forcing extension of V. Does V is definable in V[G] with parameters?

Can we imitate known arguments?

- 1. In ZF, we can prove that, in V[G], V satisfies the κ -covering property for some large κ .
- 2. However, it is unclear that V satisfies the κ -approximation property for some κ .
- 3. Even if V satisfies the κ -covering and the κ -approx. properties, we have no idea how to prove V is a unique model satisfying the covering and the approximation properties.

Ground model definability in ZF

Forcing over models of ZF is very useful to construct various models: e.g., forcing over $L(\mathbb{R})$.

Question

Suppose V is a model of ZF, and V[G] is a forcing extension of V. Does V is definable in V[G] with parameters?

Can we imitate known arguments?

- 1. In ZF, we can prove that, in V[G], V satisfies the κ -covering property for some large κ .
- 2. However, it is unclear that V satisfies the κ -approximation property for some κ .
- Even if V satisfies the κ-covering and the κ-approx. properties, we have no idea how to prove V is a unique model satisfying the covering and the approximation properties.

Known result

Theorem (Gitman-Johnstone, ZF)

Suppose DC_{κ} holds. Then for every poset \mathbb{P} with size $< \kappa$ (hence \mathbb{P} is assumed to be well-orderable), V is definable in $V^{\mathbb{P}}$ with some parameters.

Their proof does not need the full AC but a weak AC. It is still open whether V is always definable in V[G] without AC.

Main result

In this talk, we show the following partial answers of this question.

Theorem (ZF)

Suppose one of the following holds:

- 1. There is a poset ${\mathbb P}$ which forces the Axiom of Choice, or
- 2. There are proper class many supercompact cardinals.

Then there is a formula $\varphi(x, y)$ such that for every forcing extension V[G] of V, there is $p \in V$ with

$$x \in V \iff V[G] \vDash \varphi(x,p)$$

Hence V is definable in V[G]. Actually every ground model is uniformly definable.

Corollary (ZF)

- 1. If V = L(X) for some X, then V is definable in its forcing extensions.
- 2. It is consistent that DC_{ω} (or countable choice, or other weak AC) fails, but V is definable in its forcing extension of V.

Assumptions

- 1. There is a poset ${\mathbb P}$ which forces the Axiom of Choice, or
- 2. There are proper class many supercompact cardinals.

First we prove the theorem under the assumption (1), and next prove under (2).

Corollary (ZF)

- 1. If V = L(X) for some X, then V is definable in its forcing extensions.
- 2. It is consistent that DC_{ω} (or countable choice, or other weak AC) fails, but V is definable in its forcing extension of V.

Assumptions

- 1. There is a poset ${\mathbb P}$ which forces the Axiom of Choice, or
- 2. There are proper class many supercompact cardinals.

First we prove the theorem under the assumption (1), and next prove under (2).

When is AC forceable?

In order to prove main theorem under the assumption (1), we need a new characterization of "AC is forceable".

Theorem (Blass, ZF)

The following are equivalent:

- 1. There is a poset which forces AC.
- 2. There is a set X such that for every set Y, there is an ordinal α is a surjection $f : \alpha \times X \to Y$.

Semi-ground

Definition (ZF)

Let $M \subseteq V$ be an inner model of ZF. For a cardinal κ , M satisfies the κ -global covering property if for every α and $f : \alpha \to \text{Ord}$, there is $F \in M$ such that $\text{dom}(F) = \alpha$, $f(\beta) \in F(\beta)$ and $|F(\beta)| < \kappa$ for $\beta < \alpha$. (Note: $F(\beta)$ can be a set of ordinals, hence $|F(\beta)| < \kappa$ makes sense.) M is a semi-ground if M satisfies the Axiom of Choice, and there is

a cardinal κ such that M satisfies the κ -global covering property.

Theorem (Bukovsky, ZFC)

Let $M \subseteq V$ be an inner model of ZFC. Then M is a ground model of V if and only if M satisfies the κ -global covering property for some κ .

Semi-ground

Definition (ZF)

Let $M \subseteq V$ be an inner model of ZF. For a cardinal κ , M satisfies the κ -global covering property if for every α and $f : \alpha \to \text{Ord}$, there is $F \in M$ such that $\text{dom}(F) = \alpha$, $f(\beta) \in F(\beta)$ and $|F(\beta)| < \kappa$ for $\beta < \alpha$. (Note: $F(\beta)$ can be a set of ordinals, hence $|F(\beta)| < \kappa$ makes sense.) M is a semi-ground if M satisfies the Axiom of Choice, and there is

a cardinal κ such that M satisfies the κ -global covering property.

Theorem (Bukovsky, ZFC)

Let $M \subseteq V$ be an inner model of ZFC. Then M is a ground model of V if and only if M satisfies the κ -global covering property for some κ .

Definability of semi-grounds

Proposotion (ZF)

- 1. If $M \subseteq V$ is a semi-ground, then M satisfies the κ -approximation property for some κ .
- Let M and N be inner models of ZFC. Suppose M and N satisfy the κ-global covering property, and M ∩ P(κ⁺) = N ∩ P(κ⁺). Then M = N.
- 3. Semi-grounds are uniformly definable: There is a formula $\varphi(x, y)$ such that:
 - 3.1 For every $r \in V$, $W_r = \{x : \varphi(x, r)\}$ is a transitive model of ZFC, and is a semi-ground model of V.
 - 3.2 For every $M \subseteq V$, if M is a semi-ground model of V, then there is r such that $M = W_r$.

The proofs are the same to one in the context of ZFC; AC in M is necessary, but AC in V is not.

New characterization that AC is forceable

Definition (ZF)

Let $M \subseteq V$ be an inner model of ZF. For a set X, let M(X) be the minimal transitive model of ZF with $M \cup \{X\} \subseteq M(X)$: $M(X) = \bigcup_{\alpha} L(M_{\alpha} \cup \{X\}).$

Proposotion (ZF)

The following are equivalent:

- 1. There is a poset which forces AC.
- 2. There is a semi-ground M and a set X such that V = M(X).

Proof: (2) \Rightarrow (1). Force $\operatorname{Coll}(\omega, X)$, adding a surjection from ω onto X. In $V^{\operatorname{Coll}(\omega,X)}$, X is well-orderable. M satisfies the AC, hence in V[G], every element of V = M(X) is well-orderable. Since $V^{\operatorname{Coll}(\omega,X)}$ is a forcing extension of V, every element of $V^{\operatorname{Coll}(\omega,X)}$ is well-orderable as well.

New characterization that AC is forceable

Definition (ZF)

Let $M \subseteq V$ be an inner model of ZF. For a set X, let M(X) be the minimal transitive model of ZF with $M \cup \{X\} \subseteq M(X)$: $M(X) = \bigcup_{\alpha} L(M_{\alpha} \cup \{X\}).$

Proposotion (ZF)

The following are equivalent:

- 1. There is a poset which forces AC.
- 2. There is a semi-ground M and a set X such that V = M(X).

Proof: (2) \Rightarrow (1). Force $\operatorname{Coll}(\omega, X)$, adding a surjection from ω onto X. In $V^{\operatorname{Coll}(\omega,X)}$, X is well-orderable. M satisfies the AC, hence in V[G], every element of V = M(X) is well-orderable. Since $V^{\operatorname{Coll}(\omega,X)}$ is a forcing extension of V, every element of $V^{\operatorname{Coll}(\omega,X)}$ is well-orderable as well.

Theorem (U., ZFC)

Ground models are downward directed: Suppose M and N are inner models of ZFC, and ground models of V. Then there is a model W of ZFC such that W is a common ground model of M and N.

Proof of (1) \Rightarrow (2). Take a poset \mathbb{P} which forces AC. Take V-generic $G, H \subseteq \mathbb{P}$ which are mutually generic. Then $V[G \times H]$ is a common forcing extension of V[G] and V[H]. Note that V[G], V[H], and $V[G \times H]$ satisfy AC. By Solovay's result, we have $V[G] \cap V[H] = V$. V[G] and V[G] are ground models of $V[G \times H]$. Hence there is a model W of ZFC which is a common ground model of V[G] and V[H]. Then

$$W \subseteq V[G] \cap V[H] = V \subseteq V[G] = W[G']$$

$$W \subseteq V[G] \cap V[H] = V \subseteq V[G] = W[G']$$

Since W is a semi-ground of V[G] and $W \subseteq V \subseteq V[G]$, one can check that W is a semi-ground of V. Then V = W(X) for some X by the following Gregoriff's result:

Theorem (Gregoriff, ZF)

Suppose $W \subseteq V$ is an inner model of ZF, and suppose $W \subseteq V \subseteq W[G']$. Then W[G'] is a forcing extension of V if and only if V = W(X) for some X.

Lemma (ZF)

Suppose AC is forceable. Then for every inner model $M \subseteq V$ of ZF, if M is a ground model of V, then there is a semi-ground W of V and a set X such that M = W(X).

Proof.

Since V is a forcing extension of M, AC is forceable over M. Hence there is a semi-ground W of M and a set X such that M = W(X). $W \subseteq M \subseteq V$, hence one can check that W is also a semi-ground of V.

Uniform definability of ground models

Theorem (ZF)

If AC is forceable, then all ground models are uniformly definable.

Proof.

Let $\{W_r : r \in V\}$ be a uniformly definable collection of all semi-grounds. Then all ground models are definable as: $M \subseteq V$ is a ground model $\iff M = W_r(X)$ for some r and X, and there is a poset $\mathbb{P} \in M$ and (M, \mathbb{P}) -generic G with M[G] = V.

Corollary

If AC is forceable, then V is definable in its forcing extensions.

Large cardinals in ZF

Definition (Woodin, ZF)

Let κ be an uncountable cardinal.

- 1. κ is <u>inaccessible</u> if for every $x \in V_{\kappa}$, there is no cofinal map from x into κ .
- 2. κ is supercompact if for every $\alpha > \kappa$, there is $\beta \ge \alpha$, a transitive set N, and an elementary embedding $j: V_{\beta} \to N$ such that:

```
2.1 crit(j) = \kappa and \alpha < j(\kappa).
2.2 V_{\alpha} N \subseteq N.
```

- Every supercompact cardinal is inaccessible.
- In ZFC, κ is inaccessible $\iff \kappa$ is inaccessible in the usual sense, and κ is supercompact $\iff \kappa$ is supercompact in the usual sense.

Norm: coarse measure of sets

In ZF, we can not define the cadinality of a set in the usual sense, so the covering and the approximation properties do not work well as intended. To recover it, we define a rough and coarse measure of sets which will be work in ZF:

Definition (ZF)

For a set x, the norm ||x|| of x is the least ordinal α such that there is a surjection from V_{α} onto x.

- $||x|| \leq \operatorname{rank}(x).$
- $x \subseteq y \Rightarrow ||x|| \le ||y||.$
- $||x|| = ||y|| \not\Rightarrow$ there is a bijection $f : x \to y$.
- If $M \subseteq V$ is an inner model of ZF and $x \in M$, then $||x|| \leq ||x||^M$.

Norm-covering and approximation

Definition (ZF)

Let $M \subseteq V$ be an inner model of ZF, and α an ordinal.

- 1. *M* satisfies the α -norm covering property if for every set $x \subseteq M$ with $||x|| < \alpha$, there is $y \in M$ such that $x \subseteq y$ and $||y||^M < \alpha$.
- 2. *M* satisfies the α -norm approximation property if whenever $X \subseteq M$, if $\overline{X \cap x \in M}$ for every $x \in M$ with $||x||^M < \alpha$, then $X \in M$.

Super-inaccessible cardinal

Next, we will define large cardinals which is sufficient to imply a kind of Löwenheim-Skolem theorem:

Definition (ZF)

An inaccessible cardinal κ is super-inaccessible if for every $\alpha \geq \kappa$, $\lambda < \kappa$, and $x \in V_{\alpha}$, there is $\beta \geq \alpha$ and $M \prec V_{\beta}$ such that:

- 1. $M \cap \kappa \in \kappa$ and $V_{M \cap \kappa} \subseteq M$.
- 2. $x \in M$, and $V_{\lambda}(M \cap V_{\alpha}) \subseteq M$.
- 3. If N is the transitive collapse of M, then $N \in V_{\kappa}$ (hence $||M|| < \kappa$).
 - Every supercompact cardinal is super-inaccessible.
 - In ZFC, every inaccessible cardinal is super-inaccessible.

Definability of models

Lemma (ZF)

Let $M_0, M_1 \subseteq V$ be inner models of ZF, λ a cardinal, and $\kappa > \lambda$ a super-inaccessible cardinal. If M_0 and M_1 satisfy the λ -norm covering and the λ -norm approximation properties, and $M_0 \cap V_{\kappa} = M_1 \cap V_{\kappa}$, then $M_0 = M_1$.

Proof: By the induction on the rank of sets. Suppose $\alpha > \kappa$ and $M_0 \cap V_{\alpha} = M_1 \cap V_{\alpha}$. We show that: If $x \in M_0 \cap \mathcal{P}(V_\alpha)$ with $||x||^{M_0} < \lambda$, then $x \in M_1$. Since κ is super-inaccessible, there is $\beta > \alpha + 1$ and $N \prec V_{\beta}$ such that N contains all relevant objects, $V_{\lambda}(N \cap V_{\alpha}) \subseteq N$, and $||N|| < \kappa$. We know $x \subseteq N \cap V_{\alpha} \cap M_0$. By the λ -norm approx. property of M_0 and M_1 , we have $N \cap V_{\alpha} \cap M_0 \in M_0 \cap M_1$. Let N' be the transitive collapse of $N \cap V_{\alpha} \cap M_0 \in M_0 \cap M_1$. $||N'|| < \kappa$, and since $V_{\kappa} \cap M_0 = V_{\kappa} \cap M_0$, we have $x \in \mathcal{P}(N \cap V_{\alpha} \cap M_0) \cap M_0 = \mathcal{P}(N \cap V_{\alpha} \cap M_0) \cap M_1.$

Covering and approximation of ground models Lemma (ZF)

Suppose κ is a super-inaccessible cardinal. Suppose V = M[G] for some $G \subseteq \mathbb{P} \in M$. If $\mathbb{P} \in V_{\kappa}$, then M satisfies the κ -norm covering and the κ -norm approximation properties.

Theorem (ZF)

Suppose there are proper class many super-inaccessible cardinals. Then all ground models are uniformly definable; If V = M[G] for some $G \subseteq \mathbb{P} \in M$, take supercompact cardinals $\lambda < \kappa$ with $\mathbb{P} \in V_{\lambda}$, and let $X = M \cap V_{\kappa}$. Then M is definable as a unique model N of ZF such that

- 1. N satisfies the λ -norm covering and the λ -approximation properties,
- 2. $N \cap V_{\kappa} = X$,
- 3. V = N[G] for some $G \subseteq \mathbb{P} \in N$.

Covering and approximation of ground models Lemma (ZF)

Suppose κ is a super-inaccessible cardinal. Suppose V = M[G] for some $G \subseteq \mathbb{P} \in M$. If $\mathbb{P} \in V_{\kappa}$, then M satisfies the κ -norm covering and the κ -norm approximation properties.

Theorem (ZF)

Suppose there are proper class many super-inaccessible cardinals. Then all ground models are uniformly definable; If V = M[G] for some $G \subseteq \mathbb{P} \in M$, take supercompact cardinals $\lambda < \kappa$ with $\mathbb{P} \in V_{\lambda}$, and let $X = M \cap V_{\kappa}$. Then M is definable as a unique model N of ZF such that

- 1. N satisfies the $\lambda\text{-norm}$ covering and the $\lambda\text{-approximation}$ properties,
- 2. $N \cap V_{\kappa} = X$,

3.
$$V = N[G]$$
 for some $G \subseteq \mathbb{P} \in N$.

Lemma (ZF)

If κ is super-inaccessible, and $\mathbb{P} \in V_{\kappa}$, then κ is super-inaccessible in $V^{\mathbb{P}}$.

Corollary (ZF)

Suppose there are proper class many super-inaccessible cardinals. Then V is definable in its forcing extensions.

Remarks

Woodin proved that some fragments of AC are derived from large cardinals:

Theorem (Woodin, ZF)

- 1. Suppose κ is supercompact. Then $Coll(\omega, < V_{\kappa})$ forces the dependent choice.
- 2. Suppose κ is a singular cardinal, and a limit of supercompact cardinals. Then κ^+ is regular, and the non-stationary ideal over κ^+ is κ^+ -complete.

Lemma (ZF)

Supercompact cardinals in Woodin's theorem can be replaced by super-inaccessible cardinals.

Remarks

Woodin proved that some fragments of AC are derived from large cardinals:

Theorem (Woodin, ZF)

- 1. Suppose κ is supercompact. Then $Coll(\omega, < V_{\kappa})$ forces the dependent choice.
- 2. Suppose κ is a singular cardinal, and a limit of supercompact cardinals. Then κ^+ is regular, and the non-stationary ideal over κ^+ is κ^+ -complete.

Lemma (ZF)

Supercompact cardinals in Woodin's theorem can be replaced by super-inaccessible cardinals.

Conjecture (Woodin, ZF)

The Axiom of Choice Conjecture is: Suppose there are many supercompact cardinals. Then AC is forceable.

- It is known that The Axiom of Choice Conjecture is true if V = L(P(Ord)) and Woodin's HOD-Conjecture is provable from ZFC.
- The Axiom of Choice Conjecture is equivalent to: Suppose there are many supercompact cardinals. Then V has a semi-ground W such that V = W(X) for some X.
- If the Axiom of Choice Conjecture is true, then "there are proper class many supercompact cardinals" ⇒ "AC is forceable", hence the second main theorem is immediate from the first.

Thank you for your attention!

Reference:

- L. Bukovský, Characterization of generic extensions of models of set theory. Fund. Math. 83 (1973), no. 1, 35–46.
- G. Fuchs, J. D. Hamkins, J. Reitz, *Set-theoretic geology*. Ann. Pure Appl. Logic 166 (2015), no. 4, 464–501.
- J. D. Hamkins, *Extensions with the approximation and cover properties have no new large cardinals.* Fund. Math. 180 (2003), no. 3, 257–277.
- T. Usuba, *The downward directed grounds hypothesis and very large cardinals*, submitted.
- H. Woodin, *Suitable Extender Models 1*, Journal of Math. Logic, Vol.10 (2010) 101–339.