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Forcing in Ramsey Theory on Trees
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Day 3 Outline

The focus today is on

1 The Halpern-Läuchli Theorem and a forcing proof.

2 Milliken’s topological Ramsey space of strong trees.

3 Applications to finite Ramsey degrees for the Rado graph.

4 A new almost topological Ramsey space of strong triangle-free trees.

5 Finite Ramsey degrees for the universal triangle-free graph.

6 Extensions to structures of measurable cardinality.
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Strong Trees

A tree T ⊆ 2<ω is a strong subtree if there is an infinite set L ⊆ ω such
that for each node t ∈ T , t splits iff lh(t) ∈ L.
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The Halpern-Läuchli Theorem (Strong Tree Version)

For a tree T ⊆ 2<ω and l < ω, let T (l) denote T ∩ 2l .

Thm. (Halpern-Läuchli) Given any strong trees Ti ⊆ 2<ω, i < d ,
L ∈ [ω]ω the levels of splitting nodes in each Ti , and a coloring

c :
⋃
l∈L

∏
i<d

Ti (l)→ 2,

there are strong subtrees Si ⊆ Ti and an L′ ∈ [L]ω which is the set of
the splitting levels in each Si such that c is monochromatic on⋃

l ′∈L′

∏
i<d

Si (l
′).
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The Halpern-Läuchli Theorem (Strong Tree Version)

For a tree T ⊆ 2<ω and l < ω, let T (l) denote T ∩ 2l .
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Harrington’s forcing proof of Halpern-Läuchli

(Proof as outlined for me by Laver)

Let d ≥ 1 and for each i < d , let Ti be a strong subtree of 2<ω. Fix a
coloring

c :
⋃
l∈L

∏
i<d

Ti (l)→ 2.

Thm. (Erdős-Rado) For r ≥ 0 finite and µ an infinite cardinal,

ir (µ)+ → (µ+)r+1
µ .

Let κ = i2d−1(ℵ0)+. Then

κ→ (ℵ1)2dℵ0 .

The following forcing notion P will add κ many generic paths ḃi ,α,
α < κ, through each Ti , i < d .
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α < κ, through each Ti , i < d .

Dobrinen Ramsey theory in forcing University of Denver 6 / 50



Harrington’s forcing proof of Halpern-Läuchli
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p ∈ P iff is a partial function p with dom(p) = d × ~δp,

where ~δp ∈ [κ]<ω and {p(i , δ) : δ ∈ ~δp} ⊆ Ti (lp), for each i < d , where
lp ∈ ω.

q ≤ p if and only if either

1 lq = lp and q ⊇ p; or else

2 lq > lp, ~δq ⊇ ~δp, and q(i , δ) ⊃ p(i , δ), for each pair (i , δ) ∈ d × ~δp.

Remark. This is essentially Cohen forcing but on the trees.
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Let U̇ be a name for an ultrafilter on ω and

let ḃ~α = (ḃ0,α0 , . . . , ḃd−1,αd−1).

For each ~α = (α0, . . . , αd−1) ∈ [κ]d , choose a condition p~α ∈ P such that

1 ~α ⊆ ~δp~α ,

2 p~α  ∃ε ∈ 2 such that c(ḃ~α(l)) = ε for U̇ many l”,

3 p~α decides a value for ε, call it ε~α,

4 c(p~α(i , αi ) : i < d) = ε~α.
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Claim. There are K0 < · · · < Kd infinite subsets of κ such that the set
of conditions {p~α : ~α ∈

∏
i<d Ki} is compatible.

There is one ε∗ < 2 such that for all ~α ∈
∏

i<d Ki ,

p~α forces c(ḃ~α(l)) = ε∗ on U̇ many levels l .

There are nodes t∗i such that for each ~α ∈
∏

i<d Ki , p~α(i , αi ) = t∗i .

This follows from a judicious coloring with ω many colors and an
application of the Erdős-Rado Theorem.
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Make a coloring f on [κ]2d which codes all the information we need:

Let I denote the collection of all functions ι : 2d → 2d such that
ι � {0, 2, . . . , 2d − 2} and ι � {1, 3, . . . , 2d − 1} are strictly increasing
sequences and {ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d − 2), ι(2d − 1)}.

For ~θ ∈ [κ]2d and ι ∈ I, letting ~α = ιe(~θ ), ~β = ιo(~θ ), and k~α := |~δ~α|, let

f (ι, ~θ) = 〈ι, ε~α, k~α, , 〈〈i , j〉 : i < d , j < k~α, and ~δ~α(j) = αi 〉,
〈〈p~α(i , δ~α(j)) : j < k~α〉 : i < d〉, 〈〈p~β(i , δ~β(j)) : j < k~β〉 : i < d〉,

〈〈j , k〉 : j < k~α, k < k~β, δ~α(j) = δ~β(k)〉〉. (1)

Let f (~θ) be the sequence 〈f (ι, ~θ) : ι ∈ I〉, where I is given some fixed
ordering. By the Erdős-Rado Theorem, there is K ∈ [κ]ℵ1 homogeneous
for f .
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From the homogeneity of f on K ∈ [κ]ℵ1 , one can prove the claim.

Claim. There are K0 < · · · < Kd infinite such that the set of conditions
{p~α : ~α ∈

∏
i<d Ki} is compatible.

There is one ε∗ < 2 such that for all ~α ∈
∏

i<d Ki ,

p~α forces c(ḃ~α(l)) = ε∗ on U̇ many levels l .

There are nodes t∗i such that for each ~α ∈
∏

i<d Ki , p~α(i , αi ) = t∗i .

Now use conditions {p~α : ~α ∈
∏

i<d Ki} to help build strong subtrees Si
extending the node t∗i , i < d , which have the same splitting levels and
all have the same c-color ε∗ on each product of level sets.
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Constructing Si in Ti to satisfy H-L Thm.

•

•

•

•
• • • •

• • • •
• • • • • • • •

• • • • • • • •

T0 T1

s0〈〉 = t∗0 s1〈〉 = t∗1

tα0 tα1
tβ0 tβ1

q(0, α0) q(0, α1) q(1, β0) q(1, β1)
s00 s01 s10 s11

tα1 tα2tα3 tα4
tβ1 tβ2 tβ3 tβ4

r(0, α0) r(0, α1) r(0, α2) r(0, α3) r(1, β0) r(1, β1) r(1, β2) r(1, β3)

s000 s001 s010 s011 s100 s101 s110 s111

Take q ≤ p(α0,β0), p(α0,β1), p(α1,β0), p(α1,β1) with each q(0, αi ) w tαi , and
q(1, βj) w tβj , and deciding color ε∗ for all pairs of nodes of the form
{q(0, αi ), q(1, βj) : i , j < 2}. Let s0i = q(0, αi ) and s1j = q(1, βj).
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Milliken’s topological Ramsey space of strong trees (d = 1)

The Milliken space is the triple (M,≤, r), where

1 M consists of all strong subtrees T ⊆ 2<ω,

2 S ≤ T iff S is a subtree of T ,

3 The n-th restriction of a tree T is the initial subtree
rn(T ) = {t ∈ T : t there are < n splitting nodes below t}.

ARn is the collection {rn(T ) : T ∈M}.

AR is the collection of all finite strong subtrees.
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On board - show pictures of rk+1[k,T ] for various k < ω.
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Notice that the proof of Axiom A.4 is really an application of the
Halpern-Läuchli Theorem.

In the example of A.4 for r2[1,T ], we are applying the Halpern-Läuchli
Theorem for d = 2 trees, one tree above each of the immediate
successors of the maximal nodes in r1(T ).

Exercize. Use the Halpern-Läuchli Theorem to prove Axiom A.4 for
the Milliken space.
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Milliken’s Theorem

For T ∈M, let ARk |T denote {rk(S) : S ≤ T}.

The following is a special case of the Abstract Nash-Williams Theorem for
the Milliken space:

Thm. (Milliken) For each k < ω, T ∈M and coloring c : ARk |T → 2,
there is an S ≤ T such that c is one color on ARk |S .

Milliken’s Theorem was one of the key ingredients of Sauer’s proof that
the Rado graph has finite Ramsey degrees.
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The Rado graph

The Rado graph is the random graph on ω many vertices.

The Rado graph is the universal countable graph.

The Rado graph is the homogeneous countable graph.

The Rado graph is the Fräıssé limit of the Fräıssé class of finite graphs.

We let R denote the Rado graph.
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Ramsey degrees

Fact. For each finitary coloring of the vertices of the Rado graph R,
there is a subgraph R′, also a Rado graph, in which the vertices are
homogeneous for c .

However, for finite colorings of graphs with more than one vertex, it is
not always possible to cut down to one color in a copy of the full Rado
graph.

Def. The Ramsey degree of a finite graph G is the smallest number tG
such that for each coloring of all copies of G inside R, there is a
subgraph R′, also a Rado graph, such that all copies of G in R′ have no
more than tG colors.
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The Rado graph has finite Ramsey degrees

Thm. (Sauer) The Rado graph has finite Ramsey degrees for every
finite graph.

Key notions in the proof: Let G be a finite graph.

1 Trees can code graphs.

2 There are only finitely many isomorphism types of trees coding G,
and each of these can be enveloped uniquely into a finite strong
tree.

3 Apply Milliken’s Theorem to these ‘strong tree envelopes’ of the
trees coding G.
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Coding graphs as subtrees of 2<ω

Let G be a graph.

Enumerate the vertices of G in any order as 〈vn : n < ω〉.

The n-th distinguished node tn codes vn.

For all i < n,
tn(lh(ti )) = 1⇔ vn E vi .
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Draw

A graph.
A tree coding this graph.
A diagonal tree coding this graph.
Two types of diagonal trees coding edges.
Their strong tree envelopes.
How the Milliken Theorem is used to prove the finite Ramsey degrees for
the Rado graph.
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The Universal Triangle-Free Graph

Next, a recent result: The universal triangle-free graph on countably many
vertices has finite Ramsey degrees.

Key ideas are

1 Construction of a new almost Ramsey space of ‘strong triangle-free
trees’.

2 The use of forcing to prove the pigeonhole principle.

3 A new notion of subtree envelope.
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The universal homogeneous triangle-free graph

Def. K3 denotes the Fräıssé class of all countable triangle-free graphs.

H is universal for K3 if H is triangle-free and every countable
triangle-free graph embeds into H.

H is homogeneous for K3 if whenver G is a finite triangle-free graph,
every embedding of G into H can be extended to an automorphism of
H.

Thm. (Henson) There is a countable graph which is universal and
homogeneous for K3.

Any two countable universal homogeneous triangle-free graphs are
isomorphic. Let H3 denote it.
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Previous Results

Thm. (Nešetřil/Rödl) K3 has the Ramsey property:

∀G ≤ H in K3 ∃K ∈ K3 K → (H)G2 .

Thm. (Komjáth/Rödl) For any finite coloring of the vertices |H3|,
there is an H ∈

(H3
H3

)
such that |H| has one color.

Thm. (Sauer) For any finite coloring of the edges in H3, there is an
H ∈

(H3
H3

)
such that the edges in H take on no more than two colors.

Dobrinen Ramsey theory in forcing University of Denver 24 / 50



Previous Results
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Does H3 have finite Ramsey degrees?

Question. Given any finite triangle free graph G, is there a number
nG < ω such that for any coloring c of all copies of G in H3 into finitely
many colors, there is a subgraph H of H3 isomorphic to H3 in which
the coloring takes on no more than nG colors?
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Constructing copies of H3

Thm. (Henson). The following property is equivalent to H being a
universal triangle-free graph:

Property (A3).

(i) H is triangle-free.

(ii) If A and B are disjoint finite sets of vertices of H, and H|A (the
graph H restricted to the vertices in A) does not have any edges,
then there is another vertex in H which is connected to every
member of A and to no member of B.

Property (A3) provides a simple way to construct H3. We use a slight
modification in our constructions.

Dobrinen Ramsey theory in forcing University of Denver 26 / 50



Constructing copies of H3

Thm. (Henson). The following property is equivalent to H being a
universal triangle-free graph:

Property (A3).

(i) H is triangle-free.

(ii) If A and B are disjoint finite sets of vertices of H, and H|A (the
graph H restricted to the vertices in A) does not have any edges,
then there is another vertex in H which is connected to every
member of A and to no member of B.

Property (A3) provides a simple way to construct H3. We use a slight
modification in our constructions.

Dobrinen Ramsey theory in forcing University of Denver 26 / 50



Constructing copies of H3

Thm. (Henson). The following property is equivalent to H being a
universal triangle-free graph:

Property (A3).

(i) H is triangle-free.

(ii) If A and B are disjoint finite sets of vertices of H, and H|A (the
graph H restricted to the vertices in A) does not have any edges,
then there is another vertex in H which is connected to every
member of A and to no member of B.

Property (A3) provides a simple way to construct H3. We use a slight
modification in our constructions.

Dobrinen Ramsey theory in forcing University of Denver 26 / 50



What codes a triangle?

Recall: Trees code graphs.

For i < j < k , suppose the vertices {vi , vj , vk} are coded by the
distinguished nodes ti , tj , tk in 2<ω.

The vertices {vi , vj , vk} form a triangle if and only if the distinguished
nodes ti , tj , tk satisfy tk(|tj |) = tk(|ti |) = tj(|ti |) = 1.

Whenever tk(|ti |) = tj(|ti |) = 1, we say that tk and tj have parallel 1’s.

Here |t| is denoting the length of the node t.
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Finite strong triangle-free trees

Finite strong triangle-free trees are trees which code a triangle-free
graph and which branch as much as possible, subject to the

Triangle-Free Extension Criterion: A node t at the level of the n-th
distinguished node tn extends right if and only if t and tn have no
parallel 1’s.

Every node always extends left.
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Building a strong triangle-free T to code H3

〈 〉

t0

t1

t2

t3

•

•

•

•

v1

v2

v3

v0
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Building a strong triangle-free T to code H3

〈 〉

t0

t1

t2

t3

t4

t5

•

•

•

•

•

•

v1

v2

v3

v0

v4

v5
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Skew strong triangle-free trees

In order to prove A.4 holds for r1[0,T ], we need to make the trees skew.

The following structure is skew and diagonal, but codes H3 in exactly
the same way that T does. (Draw)

A node in a strong triangle-free coding tree is a critical node if it is
either a distinguished node or a splitting node.
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The almost Ramsey space T (T) of strong coding trees

Let T be a skew strong triangle-free tree densely coding H3.

Let T (T) or simply T denote the collection of all subtrees T ≤ T which
are isomorphic to T.

Note that each T ∈ T codes a copy of H3.

For subtrees T ,T ′ of T, write T ′ ≤ T to denote that T ′ is a subtree of T
and T ′ ∼= T .

rk(T ) is the first k levels of T , where the levels are determined by the
critical nodes.
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The universal triangle-free graph has finite Ramsey degrees

Thm. (D.)

1 There is a skew strong triangle-free tree coding T coding H3.

2 (T (T),≤, r) forms a space which satisfies all four of Todocevic’s
Axioms except Axiom A.3 (2).

3 For each k and each T ∈ T (T), ARk |T has the Ramsey property,
and some stronger statements hold.

4 The universal triangle-free graph has finite Ramsey degrees.

Dobrinen Ramsey theory in forcing University of Denver 33 / 50



The universal triangle-free graph has finite Ramsey degrees

Thm. (D.)

1 There is a skew strong triangle-free tree coding T coding H3.

2 (T (T),≤, r) forms a space which satisfies all four of Todocevic’s
Axioms except Axiom A.3 (2).

3 For each k and each T ∈ T (T), ARk |T has the Ramsey property,
and some stronger statements hold.

4 The universal triangle-free graph has finite Ramsey degrees.

Dobrinen Ramsey theory in forcing University of Denver 33 / 50



The universal triangle-free graph has finite Ramsey degrees

Thm. (D.)

1 There is a skew strong triangle-free tree coding T coding H3.

2 (T (T),≤, r) forms a space which satisfies all four of Todocevic’s
Axioms except Axiom A.3 (2).

3 For each k and each T ∈ T (T), ARk |T has the Ramsey property,
and some stronger statements hold.

4 The universal triangle-free graph has finite Ramsey degrees.

Dobrinen Ramsey theory in forcing University of Denver 33 / 50



The universal triangle-free graph has finite Ramsey degrees

Thm. (D.)

1 There is a skew strong triangle-free tree coding T coding H3.

2 (T (T),≤, r) forms a space which satisfies all four of Todocevic’s
Axioms except Axiom A.3 (2).

3 For each k and each T ∈ T (T), ARk |T has the Ramsey property,
and some stronger statements hold.

4 The universal triangle-free graph has finite Ramsey degrees.

Dobrinen Ramsey theory in forcing University of Denver 33 / 50



Finite Ramsey degrees in H3

The rest of the proof of finite Ramsey degrees follows these steps.

1 Let G be a finite triangle-free graph.

2 There are only finitely many ways to code G by a diagonal tree.

3 Define a new kind of subtree envelope for the finite collection of all
diagonal trees with distinguished nodes coding G.

4 Thin to a tree S in which the finitely many embedding types are
homogenized. This uses an extended version of theorem that ARk is
Ramsey.

5 After we’ve finished homogenizing S for the finitely many triangle
graphs Gi , thin S to a diagonal subtree D coding H3 and a set of
auxiliary witnessing nodes W from S so that for each tree coding a
tree in our collection of types there are nodes in W available to get
an envelope in S.
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A.4 and stronger statements are proved by forcing

Thm. (D.) Let T ∈ T , k < ω, c : rk+1[rk(T ),T ]→ 2 be given. Then
there is an S ∈ [rk(T ),T ] such that c is constant on rk+1[rk(T ),S ].

The proof builds on Harrington’s forcing proof of Halpern-Läuchli
Theorem.

The difficulties were

1 If we don’t use skew trees, we cannot obtain A.4 for r1[0,T ]. So
we had to use skew trees in the forcing.

2 How to define a forcing for skew trees with distinguished nodes
which is transitive, does not add triangles, but has properties
similar to Cohen forcing in order to extend to homogeneous level
sets?
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Proof of A.4

Pf. Let c : rk+1[k ,T ]→ 2.

Let A = {immediate successors of rk(T ) in T} and d + 1 = |A|.

List the nodes of A as s0, . . . , sd , where sd is the node of A that the
critical node in each member of rk+1[A,T ] must extend.

Let L denote the set of levels l of T such that there is a member of
rk+1[A,T ] with critical node at level l .

Note that L = {l : the distinguished node in T (l) extends sd}.

For each for i ≤ d , let Ti = {t ∈ T : t ⊇ si}.
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Let κ = i2d . The following forcing notion P will add κ many generic
paths ḃi ,α through each Ti , i < d , and one path ḃd through Td .

p ∈ P iff is a function of the form p : {d} ∪ (d × ~δp)→ T (lp),

where ~δp ∈ [κ]<ω and lp ∈ L, satisfying

(i) p(d) is the critical node of Td(lp).

(ii) For each i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti (lp).
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Def. {ti : i ≤ d} satisfies (∗) over A iff each ti ⊇ si , td is a critical node,
and

1 If sd is extended to a distinguished node, then A ∪ {ti : i ≤ d}
satisfies the Parallel 1’s Criterion; and

2 If sd is extended to a splitting node, then all parallel 1’s in
A ∪ {ti : i ≤ d} is witnessed by a distinguished node in A.

q ≤ p if and only if either

1 lq = lp and q ⊇ p; or else

2 lq > lp, ~δq ⊇ ~δp, q(d) ⊃ p(d), and

(a) For each δ ∈ ~δp and i < d , q(i , δ) ⊃ p(i , δ),

(b) For each increasing sequence (α0, . . . , αd) ∈ (~δp)d which
{p(i , αi ) : i < d} ∪ {p(d)} satisfying (∗) over A, then
{q(i , αi ) : i < d} ∪ {q(d)} also satisfies (∗) over A.
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Let L̇d be a name for the set of levels of distinguished nodes in ḃd and U̇
be a name for an ultrafilter on L̇d .

For each ~α ∈ [κ]d , choose a condition p~α ∈ P such that

1 ~α ⊆ ~δp~α ,

2 {p~α(i , αi ) : i < d} ∪ {p(d)} satisfies (∗) over A.

3 p~α  “There is an ε ∈ 2 such that c(ḃ~α(l)) = ε for U̇ many l”,

4 p~α decides a value for ε, call it ε~α.

5 {p~α(i , αi ) : i < d} ∪ {p(d)} takes value ε~α.
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Make a coloring f on [κ]2d which codes all the information we need.

Let I denote the collection of all functions ι : 2d → 2d such that
ι � {0, 2, . . . , 2d − 2} and ι � {1, 3, . . . , 2d − 1} are strictly increasing
sequences and {ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d − 2), ι(2d − 1)}.

For ~θ ∈ [κ]2d and ι ∈ I, letting ~α denote ιe(~θ ) and ~β denote ιo(~θ ), let

f (ι, ~θ) = 〈ι, ε~α, k~α, , 〈〈i , j〉 : i < d , j < k~α, and ~δ~α(j) = αi 〉,
〈〈p~α(i , δ~α(j)) : j < k~α〉 : i < d〉, 〈〈p~β(i , δ~β(j)) : j < k~β〉 : i < d〉,

〈〈j , k〉 : j < k~α, k < k~β, δ~α(j) = δ~β(k)〉〉. (2)

Let f (~θ) be the sequence 〈f (ι, ~θ) : ι ∈ I〉, where I is given some fixed
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Claim. There are K0 < · · · < Kd−1 infinite such that the set of
conditions {p~α : ~α ∈

∏
i<d Ki} is compatible.

Moreover, there are nodes t∗i , i < d , such that for each
(αi : i < d) ∈

∏
i<d Ki , p~α(i , αi ) = t∗i . Further, all p~α(d) = t∗d .

Then extend these t∗i , i ≤ d , using K0 < · · · < Kd−1 to build a member
S ∈ [rk(T ),T ] such that c is constant on rk+1[rk(T ),S ].
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We conclude this tutorial with some Ramsey results for measurable
cardinals.
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Extension of the Halpern-Läuchli Theorem to a measurable

Thm. (Shelah) Suppose V is a model of ZFC with a measurable
cardinal κ such that for λ large enough, after forcing with Add(κ, λ),
κ remains measurable.

Then for each 1 ≤ m < ω and any coloring of the m-sized level sets of
the tree 2<κ into less than κ colors, there is a strong subtree T ⊆ 2<κ

on which the coloring takes only finitely many colors.

In fact, the color depends exactly on the type of the induced subtree
below the m-many nodes.
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Thm. (Džamonja/Larson/Mitchell) Suppose V is a model of ZFC with
a measurable cardinal κ such that for λ large enough, after forcing with
Add(κ, λ), κ remains measurable.

Then for each 1 ≤ m < ω and any coloring of the m-sized antichains in
the tree 2<κ into less than κ colors, there is a strong subtree T ⊆ 2<κ

on which the coloring takes only finitely many colors.

(Again, the color depends on the type of the induced subtree below the
m-many nodes.)

This is applied in two papers of Džamonja, Larson and Mitchell to
prove that the Rado graph on κ many vertices has finite Ramsey
degrees, and that colorings of the m-sized subsets of the κ-rationals has
finite Ramsey degrees.
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Extensions to more than one tree and wider trees

A tree T ⊆ <κκ is a κ-tree if T has cardinality κ and every level of T has
cardinality less than κ.

T ⊆ <κκ is regular if it is a perfect κ-tree in which every maximal branch
has cofinality κ.

For ζ < κ, let T (ζ) = T ∩ ζκ.

Let T ⊆ <κκ be regular. A tree S ⊆ T is a strong subtree of T if S is
regular and there is some A ⊆ κ cofinal in κ such that for each s ∈ S ,

1 s splits iff t has length ζ ∈ A, and

2 For each ζ ∈ A and s ∈ S(ζ), s is maximally branching in T .
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HL(δ, σ, κ)

Def. Let δ, σ > 0 be ordinals and κ be an infinite cardinal.

HL(δ, σ, κ) is the following statement:

Given any sequence 〈Ti ⊆ <κκ : i < δ〉 of regular trees and a coloring

c :
⋃
ζ<κ

∏
i<δ

Ti (ζ)→ σ,

there exists a sequence of trees 〈Si : i < δ〉 and A ∈ [κ]κ such that

1 each Si is a strong subtree of Ti as witnessed by A ⊆ κ, and

2 there is some σ′ < σ such that c has color σ′ on
⋃
ζ∈A

∏
i<δ Si (ζ).
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Def. A cardinal κ is κ+ d-strong if there is an elementary embedding
j : V → M with critical point κ such that Vκ+d = Mκ+d .

Thm. (D./Hathaway) Let d ≥ 1 be any finite integer and suppose that
κ is a κ+ d-strong cardinal in a model V of ZFC satisfying GCH. Then
there is a forcing extension in which κ remains measurable and
HL(d , σ, κ) holds, for all σ < κ.

Open Problem. Find the exact consistency strength of HL(d , σ, κ) for
κ a measurable cardinal.

Dobrinen Ramsey theory in forcing University of Denver 47 / 50



Def. A cardinal κ is κ+ d-strong if there is an elementary embedding
j : V → M with critical point κ such that Vκ+d = Mκ+d .

Thm. (D./Hathaway) Let d ≥ 1 be any finite integer and suppose that
κ is a κ+ d-strong cardinal in a model V of ZFC satisfying GCH. Then
there is a forcing extension in which κ remains measurable and
HL(d , σ, κ) holds, for all σ < κ.

Open Problem. Find the exact consistency strength of HL(d , σ, κ) for
κ a measurable cardinal.

Dobrinen Ramsey theory in forcing University of Denver 47 / 50



Def. A cardinal κ is κ+ d-strong if there is an elementary embedding
j : V → M with critical point κ such that Vκ+d = Mκ+d .

Thm. (D./Hathaway) Let d ≥ 1 be any finite integer and suppose that
κ is a κ+ d-strong cardinal in a model V of ZFC satisfying GCH. Then
there is a forcing extension in which κ remains measurable and
HL(d , σ, κ) holds, for all σ < κ.

Open Problem. Find the exact consistency strength of HL(d , σ, κ) for
κ a measurable cardinal.

Dobrinen Ramsey theory in forcing University of Denver 47 / 50



Conclusion

1 Ramsey theory and its development is useful for better understanding
ultrafilters forced by σ-closed forcings.

2 Forcing can be used to prove new Ramsey theorems in ZFC.

3 The interaction between these two fields enriches both.

4 There are many related open problems in both directions desiring your
work.
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cardinal (2016) (submitted).
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