Towers and Ultrafilters (joint work J. Brendle and B. Farkas) the various and rules of inference are al to CEFAUK athematical que con athan Verner vhice



## The views presented here are my own and do not necessarily reflect those of my coauthors.



## Definition A tower is a descending sequence in $([\omega]^{\omega}, \subseteq^*)$ with no lower bound.

Observation Assume CH. Then every P-point is generated by a tower.

#### Question

- Can the assumption of being a P-point be weakened/dropped?
- Can CH be weakened/dropped?



# Observation If an ultrafilter is generated by a tower, then it is a P-point.

Question Can every ultrafilter contain a tower?

#### A naive attempt

Putting towers into ultrafilters



#### A naive attempt

- Enumerate  $[\omega]^{\omega}$  as  $\{X_{\alpha} : \alpha < \mathfrak{c}\}$
- ▶ start with some  $T_0 \in U$  and recursively construct  $\subseteq^*$ -descending  $T_\alpha \in U$ ; at step  $\alpha$  let  $T_{\alpha+1}$  be either  $T_\alpha \cap X_\alpha$  or  $T_\alpha \setminus X_\alpha$ , depending on which is in U
- What to do at limits?
- ► It gets even worse: It can happen, that U contains a tower but at the same time has a basis such that no infinite sequence in the basis has a pseudointersection in U. (For all we know, all ultrafilters can have such a basis!)
- Under CH it fails (Kunen, van Mill, Mills)!



Balcar, Frankiewicz, Mills: More on nowhere dense closed P-sets, Bull. Acad. Polon. Sci. Sér. Sci. Math, 28 (1980)

- ► the paper is published in an obscure journal, not available online
- need to know topology

Theorem  $% \omega ^{\ast }$  It is consistent that  $\omega ^{\ast }$  can be covered by nowhere dense closed P-sets.

Translation It is consistent that every ultrafilter contains a tower.

## Pull out the big guns

(an alternative proof)



# Observation There always is some ultrafilter, which contains a tower!

Make all ultrafilters look alike!

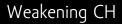
Definition (Blass) Two ultrafilters  $\mathcal{V}_0, \mathcal{V}_1$  are nearly coherent if there is an ultrafilter  $\mathcal{U}$  which is RB-below both of them.

Theorem (Blass) It is consistent that every two nonprincipal ultrafilters are nearly coherent.

(under NCF)



- Observation If  ${\mathcal U}$  contains a tower than all ultrafilters RB-above  ${\mathcal U}$  also contain towers.
- **Theorem** If a tower  $\mathcal{T}$  of length  $\mathfrak{b}$  generates a nonmeager filter and  $\mathcal{V}$  is an ultrafilter containing  $\mathcal{T}$ , then any ultrafilter  $\mathcal{R}$ B-below contains a tower.
- Theorem (Solomon,Simon) If  $\mathfrak{b} < \mathfrak{d}$  then there is a tower of length  $\mathfrak{b}$  which generates a non-meager filter.
- Note Under NCF every tower of length  $\mathfrak c$  is meager! (It is not clear, whether there are towers of length  $\mathfrak c.)$





- Question Assume MA. Does every P-point contain a tower?
- Question Does  $\mathfrak{d} = \mathfrak{c}$  imply that every P-point contains a tower?
- Theorem  $\ \ \mbox{Let}\ \omega<\lambda\leq\kappa$  be regular cardinals. Then it is consistent that
  - $\mathfrak{t} = \lambda \leq \kappa = \mathfrak{c}$ ; and
  - ► There is a selective ultrafilter which contains no tower.

In particular, it is consistent that  $\mathfrak{d}=\mathfrak{c}$  and there is a P-point not containing a tower.

### Constructing P-points without towers



- Assume  $\mathfrak{t} = \mathfrak{c}$  and  $\Diamond(\mathsf{S}^{\mathfrak{c}}_{\geq \omega_1})$
- ► Recursively construct the ultrafilter in c many steps
- Guarantee the following condition: there is a family  $\{X_{\alpha} : \alpha < \mathfrak{c}\}$ , such that if  $X \in \mathcal{U}$  then  $X_{\alpha} \subseteq X$  for all but boundedly many  $\alpha$ .
- To get  $\mathfrak{t} < \mathfrak{c}$ , use a trick of Shelah:
  - Start with GCH and let  $B = (\lambda^{<\lambda}, \supseteq)$ .
  - Force  $t = c = \kappa$ , then force the diamond.
  - ► Finally, force with B<sup>V</sup>.
  - This does not add reals and adds a tower of length  $\lambda$  thus making  $\mathfrak{t} = \lambda$ .
  - $\blacktriangleright$  Finally, show that  $B^V$  does not add long towers into the ultrafilter.