Infinite Combinatorics, Definability, and Forcing

David Schrittesser

University of Copenhagen (Denmark)

RIMS Workshop on
Infinite Combinatorics and Forcing Theory

Discrete sets

Let R be a binary relation on a set X.

Definition
 We say a set $A \subseteq X$ is discrete (w.r.t. R) \Longleftrightarrow no two distinct elements x, y of A are R-related.

Definition

We call such a set maximal discrete (w.r.t. R; short R-m.d.) if it is not a proper subset of any discrete set.
A is maximal discrete iff A is discrete and for any $x \in X \backslash A$

$$
(\exists a \in A)(a R x) \vee(x R a)
$$

Discrete sets (non-binary)

Let X be a set and $R \subseteq X<\omega$.

Definition

We say a set $A \subseteq X$ is discrete (w.r.t. $R) \Longleftrightarrow A^{<\omega} \cap R=\emptyset$.

The notion of maximal discrete set is defined as before.
A is maximal discrete iff A is discrete and for any $x \in X \backslash A$

$$
\left(\exists y_{0}, \ldots, y_{n} \in A \cup\{x\}\right)\left(y_{0}, \ldots, y_{n}\right) \in R .
$$

While maximal discrete sets always exist (under AC), one can study under which circumstances they can be definable.

Examples

There are many interesting examples where X is an effective Polish space and R is Borel:

Binary

- Transversals for equivalence relations
- mad families
- maximal eventually different families
- maximal orthogonal families of measures

Higher arity

- Hamel basis of \mathbb{R} over \mathbb{Q}
- Cofinitary groups
... and many more.

Example 1: mad families

Let $X=[\omega]^{\omega}$.

Define $R \subseteq X^{2}$ as follows: For $x, y \in X$, $x R y \Longleftrightarrow x \cap y$ is infinite.

A mad family is an infinite maximal discrete set w.r.t. R.

Some facts about mad families

(1) There is no analytic mad family (Mathias, 1968).

- There is a (lightface) Π_{1}^{1} mad family in L (A. R. Miller, 1987).
- If there is a Σ_{2}^{1} mad family, there is a Π_{1}^{1} mad family (Törnquist, 2013).
(2) One can find mad families which remain mad after forcing (for various forcings; many authors).
- In particular, the existence of a Π_{1}^{1} mad family is consistent with arbitrary values for 2^{ω}.
(3) One can force that there are no definable mad families:
- Mathias, ca. 1969: from a Mahlo,
- Törnquist, 2015: from an inaccessible (no mad families in Solovay's model),
- Horowitz-Shelah, 2016: from ZFC.
"there is no projective R-m.d. family" is equiconsistent with ZFC in several other cases, as well:
- maximal eventually different families of functions
(Brendle-Khomskii, unpublished)
- maximal orthogonal families of measures (Fischer-Törnquist, 2010); This is because the same holds for "every projective set has the Baire property"

Example 2

The statement that there are no definable R-m.d. sets can have large cardinal strength:

Theorem (Horowitz-Shelah, 2016)
There is a Borel binary relation R on 2^{ω} (in fact, a graph relation) such that "there is no projective R-m.d. set" is equiconsistent with the existence of an inaccessible cardinal.

Example 3

Let $X=\omega^{\omega}$ and for $f, g \in X$ let
$f R g \Longleftrightarrow\{n \mid f(n)=g(n)\}$ is infinite.
A (maximal) discrete set w.r.t. R is a (maximal) eventually different family.

Theorem (Horowitz-Shelah, 2016)
(ZF) There is a Borel maximal eventually different family.

Such a family remains m.d. in any larger universe.

Example 4: Orthogonality of measures

- Let $P\left(2^{\omega}\right)$ be the set of Borel probability measures on 2^{ω}.
- Two measures $\mu, \nu \in P\left(2^{\omega}\right)$ are said to be orthogonal, written

$$
\mu \perp \nu
$$

exactly if: there is a Borel set $A \subseteq 2^{\omega}$ such that

$$
\mu(A)=1
$$

and

$$
\nu(A)=0
$$

- Note that $P\left(2^{\omega}\right)$ is an effective Polish space.

History of maximal orthogonal families

Question (Mauldin, circa 1980)
Can a mof in $P\left(2^{\omega}\right)$ be analytic?
The answer turned out to be 'no':
Theorem (Preiss-Rataj, 1985)
There is no analytic mof in $P\left(2^{\omega}\right)$.
This is optimal, in a sense:
Theorem (Fischer-Törnqust, 2009)
In \mathbf{L}, there is a Π_{1}^{1} mof in $P\left(2^{\omega}\right)$.
In fact:
Theorem
If there is a Σ_{2}^{1} mof in $P\left(2^{\omega}\right)$, there is a Π_{1}^{1} mof.

Mofs and forcing

Mofs are fragile creatures:

Facts

(1) Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
(2) If there is a Cohen real over \mathbf{L}, there are no Σ_{2}^{1} mofs in $P\left(2^{\omega}\right)$ (F-T, 2009)
(3) The same holds if there is a random real over \mathbf{L} (Fischer-Friedman-Törnquist, 2010).
(4) The same holds if there is a Mathias real over \mathbf{L} (S-Törnquist, 2015).

Question (F-T, 2009)

If there is a Π_{1}^{1} mof, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?
Π_{1}^{1} mofs in extensions of \mathbf{L}
Theorem (S-Törnquist, 2015)
If s is Sacks over \mathbf{L} there is a (lightface!) Π_{1}^{1} mof in $\mathbf{L}[s]$.

Theorem (S 2016)

The statement 'there is a Π_{1}^{1} mof ' is consistent with $2^{\omega}=\omega_{2}$.
In fact :

Theorem (S 2016)

Let R be a binary Σ_{1}^{1} relation on an effective Polish space X. If \bar{s} is generic for iterated Sacks forcing over \mathbf{L}, there is a (lightface) Δ_{2}^{1} maximal \mathcal{R}-discrete set in $\mathrm{L}[\overline{\mathrm{s}}]$.

Here is the main idea of the proof in the case of adding a single Sacks real.

Assume R is symmetric (otherwise, look at $R \cup R^{-1}$).
Of course Sacks forcing \mathbb{S} is the set of perfect trees $p \subseteq 2^{<\omega}$, ordered by inclusion and $[p]$ is the set of branches through p.

We need the following theorem of Galvin:
Theorem (Galvin's Theorem)
Let $p \in \mathbb{S}$ and

$$
c:[p]^{2} \rightarrow\{0,1\}
$$

be symmetric and Baire measurable.
Then there is $q \in \mathbb{S}, q \leq p$ such that c is constant on

$$
[q]^{2} \backslash \mathrm{diag}
$$

The m.d. set will be a union of ω_{1}-many perfect sets:
For some for sequence of perfect sets $\left\langle P_{\xi} \mid \xi<\omega_{1}\right\rangle \in \mathbf{L}$, our m.d. set is just

$$
\bigcup_{\xi<\omega_{1}} \bar{P}_{\xi} \mathrm{L}[s] .
$$

We construct this sequence by induction: Say we have $\left\langle P_{\nu} \mid \nu<\xi\right\rangle \in \mathbf{L}$, and say we have $p \in \mathbb{S}$ and a \mathbb{S}-name which are candidates for

$$
p \Vdash \dot{x} \text { is not in our family. }
$$

So assume that $p \Vdash\left(\forall y \in \bigcup_{\nu<\xi} \bar{P}_{\nu}\right) \neg(\dot{x} R y)$.
We can also assume \dot{x} is given by a continuous function $f: 2^{\omega} \rightarrow X$:

$$
p \Vdash \dot{x}=f\left(s_{\dot{G}}\right)
$$

It is easy to thin out p so that

$$
\left(\forall x \in f^{\prime \prime}[p]\right)\left(\forall y \in \bigcup_{\nu<\xi} P_{\nu}\right) \neg(x R y) .
$$

Further thin out such that either:
(1) $f^{\prime \prime}[p]$ is R-discrete
(2) $f^{\prime \prime}[p]$ is R-complete, i.e. $\left(\forall x, y \in f^{\prime \prime}[p]\right) \times R y$.

In the first case, let $P_{\xi}=f^{\prime \prime}[p]$. As

$$
p \Vdash \dot{x}=f\left(s_{\dot{G}}\right) \in \bar{P}_{\xi}
$$

we have dealt with this candidate.
In the second case, let $P_{\xi}=\{f(z)\}$, where z is the left-most branch through p. By Shoenfield absoluteness

$$
p \Vdash \dot{x}=f\left(s_{\dot{G}}\right) R f(z),
$$

so we have again dealt with this candidate. In either case, $\bigcup_{\nu \leq \xi} P_{\nu}$ is discrete. By Π_{1}^{1} absoluteness, this will hold for $\bigcup_{\xi<\omega_{1}} \bar{P}_{\xi}{ }^{\text {L[s] }}$ as well.
As there are only ω_{1}-many pairs (\dot{x}, p) as above, we can ensure maximality.

A basis for \mathbb{R} over \mathbb{Q}

Let $X=\mathbb{R}$ and let R be the set of finite tuples from X which are linearly dependent over \mathbb{Q}.

A more involved proof but using similar ideas as in the previous sketch (including a generalization of Galvin's theorem to k-tuples due to Blass) gives us:

Theorem (S 2016)
If s is a Sacks real over \mathbf{L}, there is a Π_{1}^{1} basis for \mathbb{R} over \mathbb{Q} in $\mathbf{L}[s]$.

What is Galvin's Theorem for iterated Sacks forcing?

- Let \bar{P} be iterated Sacks forcing and $\bar{p} \in \mathbb{P}$. What is $[\bar{p}]$?
- Provided we can define $[\bar{p}]$...

Question:

Is there for every $\bar{p} \in \mathbb{P}$ and every

$$
c:[\bar{p}]^{2} \rightarrow\{0,1\}
$$

which is symmetric and nice, some $\bar{q} \in \mathbb{P}, \bar{q} \leq \bar{p}$ such that c is constant on $[\bar{q}]^{2} \backslash$ diag?

What do I mean by nice?

- Answer is 'yes' for c which is continuous on $[\bar{p}]^{2} \backslash$ diag (Geschke-Kojman-Kubiś-Schipperus)
- perhaps Baire measurable...?

For a dense set of $\bar{p} \in \mathbb{P}$ we have:
0 There is $F_{0}:[\bar{p}(0)] \rightarrow$ PERFECT TREES and $\sigma_{1} \in \operatorname{supp}(\bar{p})$ such that

$$
\bar{p} \Vdash \bar{p}\left(\sigma_{1}\right)=F_{0}\left(\bar{s}_{\dot{G}}(0)\right)
$$

1 There is a continuous function F_{1} and $\sigma_{2} \in \operatorname{supp}(\bar{p})$ such that (letting $\sigma_{0}=0$)

$$
\bar{p} \Vdash \bar{p}\left(\sigma_{2}\right)=F_{1}\left(\bar{s}_{\dot{G}} \upharpoonright \sigma_{2}\right)
$$

ω And so on: There exists sequences $F_{0}, \ldots, F_{k}, \ldots$ and $\sigma_{0}, \ldots, \sigma_{k}, \ldots$ with $\sigma_{0}=0$ such that the analogous holds for each $k \in \omega$ and

$$
\left\{\sigma_{k} \mid k \in \omega\right\}=\operatorname{supp}(\bar{p})
$$

Then $[\bar{p}]$ is the subspace of $\left(2^{\omega}\right)^{\lambda}$ consisting of

$$
\bar{x}: \operatorname{supp}(\bar{p}) \rightarrow 2^{\omega}
$$

such that for each $n \in \omega$

$$
\bar{x}\left(\sigma_{n}\right) \in\left[F_{n}\left(\bar{x} \upharpoonright \sigma_{n}\right)\right]
$$

A counterexample

Let $\bar{p} \in \mathbb{P}$. Fix $\xi<\lambda$.
Define a symmetric Borel function

$$
c:[\bar{p}]^{2} \rightarrow\{0,1\}
$$

by

$$
c\left(\bar{x}_{0}, \bar{x}_{1}\right)= \begin{cases}1 & \text { if } \bar{x}_{0}(\xi) \neq \bar{x}_{1}(\xi) \\ 0 & \text { otherwise }\end{cases}
$$

Note:

- Every $\bar{q} \leq \bar{p}$ will meet both colours
- $c^{-1}(1)$ is open, $c^{-1}(0)$ is closed.

For $\bar{x}_{0}, \bar{x}_{1} \in[\bar{p}]$, let

$$
\Delta\left(\bar{x}_{0}, \bar{x}_{1}\right)=\text { the least } \xi \text { such that } \bar{x}_{0}(\xi) \neq \bar{x}_{1}(\xi) .
$$

Let

$$
\Delta_{\xi}=\left\{\left(\bar{x}_{0}, \bar{x}_{1}\right) \in[\bar{p}]^{2} \mid \Delta\left(\bar{x}_{0}, \bar{x}_{1}\right)=\xi\right\}
$$

- Δ_{0} is comeager in $[\bar{p}]^{2}$
- So nice must be more restrictive than Baire measurable!
- otherwise: take c arbitrary on $\Delta_{\xi}, \xi>0$ (a meager set!)

Another counterexample:

Fix a bijection $G: \operatorname{supp}(\bar{p}) \rightarrow \omega$.
Define a symmetric function

$$
c:[\bar{p}]^{2} \rightarrow\{0,1\}
$$

as follows:
Suppose we have $\bar{x}_{0}, \bar{x}_{1} \in[\bar{p}]$ and suppose $\bar{x}_{0}<_{\text {lex }} \bar{x}_{1}$. Let

$$
\xi=\Delta\left(\bar{x}_{0}, \bar{x}_{1}\right)
$$

If $\xi \in \operatorname{supp}(\bar{p})$ and $G(\xi)=k$, set

$$
c\left(\bar{x}_{0}, \bar{x}_{1}\right)=\bar{x}_{i}(0)(k) .
$$

(When $\xi \in \operatorname{supp}(\bar{p})$ fails, set c to be 0 ; this case is irrelevant) Now if $c(\cdot, \cdot)$ only depends on $\Delta(\cdot, \cdot)$ on some [q], [$q(0)]$ can contain at most two branches, contradiction.

The solution:

Theorem (Galvin's Theorem for iterated Sacks forcing)
For every $\bar{p} \in \mathbb{P}$ and every symmetric universally Baire

$$
c:[\bar{p}]^{2} \rightarrow\{0,1\}
$$

there is $\bar{q} \in \mathbb{P}, \bar{q} \leq \bar{p}$, with an enumeration $\left\langle\sigma_{k} \mid k \in \omega\right\rangle$ of $\operatorname{supp}(\bar{q})$ and a function $N: \operatorname{supp}(\bar{q}) \rightarrow \omega$ such that for $\left(\bar{x}_{0}, \bar{x}_{1}\right) \in[\bar{q}]^{2} \backslash$ diag, the value of $c\left(\bar{x}_{0}, \bar{x}_{1}\right)$ only depends on

$$
\xi=\Delta\left(\bar{x}_{0}, \bar{x}_{1}\right)
$$

and the following (finite) piece of information:

$$
\left(\bar{x}_{0} \upharpoonright K, \bar{x}_{1} \upharpoonright K\right)
$$

where $K=\left\{\sigma_{0}, \ldots, \sigma_{N(\xi)}\right\} \times N(\xi)$.

Example 5: Cofinitary groups

- Work in the space S_{∞}, the group of bijections from \mathbb{N} to itself (permutations).
- $\mathrm{id}_{\mathbb{N}}$ is the identity function on \mathbb{N}, the neutral element of S_{∞}.

Definition

We say $g \in S_{\infty}$ is cofinitary \square

$$
\{n \in \mathbb{N} \mid g(n)=n\} \text { is finite. }
$$

$\mathcal{G} \leq S_{\infty}$ is cofinitary \Longleftrightarrow every $g \in \mathcal{G} \backslash\left\{\operatorname{id}_{\mathbb{N}}\right\}$ is cofinitary.

Definability of mcgs

Theorem (Kastermans)

No mcg can be K_{σ}.
Some history:

- Gao-Zhang: If $\mathbf{V}=\mathbf{L}$, there is a mcg with a Π_{1}^{1} set of generators.
- Kastermans: If $\mathbf{V}=\mathbf{L}$, there is a $\Pi_{1}^{1} \mathrm{mcg}$.
- Fischer-S.-Törnquist, 2015: The existence of a $\Pi_{1}^{1} \mathrm{mcg}$ is consistent with arbitrarily large continuum.

Theorem (Horowitz-Shelah, 2016)
(ZF) There is a Borel maximal cofinitary group.
By $\underline{\Sigma}_{2}^{1}$ absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future paper.

Thank You!

