Infinite Combinatorics, Definability, and Forcing

David Schrittesser

University of Copenhagen (Denmark)

RIMS Workshop on Infinite Combinatorics and Forcing Theory

Discrete sets

Let R be a binary relation on a set X.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff no two distinct elements x, y of A are R-related.

Definition

We call such a set **maximal discrete** (w.r.t. *R*; short *R*-m.d.) if it is not a proper subset of any discrete set.

A is maximal discrete *iff* A is discrete and for any $x \in X \setminus A$

$$(\exists a \in A) (a R x) \lor (x R a)$$

Discrete sets (non-binary)

Let *X* be a set and $R \subseteq X^{<\omega}$.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) $\iff A^{<\omega} \cap R = \emptyset$.

The notion of *maximal discrete set* is defined as before.

A is maximal discrete *iff* A is discrete and for any $x \in X \setminus A$

$$(\exists y_0,\ldots,y_n \in A \cup \{x\}) (y_0,\ldots,y_n) \in R.$$

While maximal discrete sets always exist (under AC), one can study under which circumstances they can be *definable*.

Examples

There are many interesting examples where X is an effective Polish space and R is Borel:

Binary

- Transversals for equivalence relations
- mad families
- maximal eventually different families
- maximal orthogonal families of measures

Higher arity

- Hamel basis of ${\mathbb R}$ over ${\mathbb Q}$
- Cofinitary groups
- ... and many more.

Example 1: mad families

Let $X = [\omega]^{\omega}$.

Define $R \subseteq X^2$ as follows: For $x, y \in X$, $x R y \iff x \cap y$ is infinite.

A mad family is an infinite maximal discrete set w.r.t. R.

Some facts about mad families

- There is no analytic mad family (Mathias, 1968).
 - There is a (lightface) Π_1^1 mad family in **L** (A. R. Miller, 1987).
 - If there is a Σ_2^1 mad family, there is a Π_1^1 mad family (Törnquist, 2013).
- One can find mad families which remain mad after forcing (for various forcings; many authors).
 - In particular, the existence of a Π¹₁ mad family is consistent with arbitrary values for 2^ω.
- One can force that there are no definable mad families:
 - Mathias, ca. 1969: from a Mahlo,
 - Törnquist, 2015: from an inaccessible (no mad families in Solovay's model),
 - Horowitz-Shelah, 2016: from ZFC.

"there is no projective *R*-m.d. family" is equiconsistent with ZFC in several other cases, as well:

- maximal eventually different families of functions (Brendle-Khomskii, unpublished)
- maximal orthogonal families of measures (Fischer-Törnquist, 2010); This is because the same holds for "every projective set has the Baire property"

Example 2

The statement that there are no definable *R*-m.d. sets can have large cardinal strength:

Theorem (Horowitz-Shelah, 2016)

There is a Borel binary relation R on 2^{ω} (in fact, a graph relation) such that "there is no projective R-m.d. set" is equiconsistent with the existence of an inaccessible cardinal.

Example 3

Let $X = \omega^{\omega}$ and for $f, g \in X$ let

$$f R g \iff \{n \mid f(n) = g(n)\}$$
 is infinite.

A (maximal) discrete set w.r.t. *R* is a (maximal) *eventually different family*.

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal eventually different family.

Such a family remains m.d. in any larger universe.

Example 4: Orthogonality of measures

• Let $P(2^{\omega})$ be the set of Borel probability measures on 2^{ω} .

• Two measures $\mu, \nu \in P(2^{\omega})$ are said to be orthogonal, written

 $\mu \perp \nu$

exactly if: there is a Borel set $A \subseteq 2^{\omega}$ such that

$$\mu(A) = 1$$

and

$$\nu(A)=0.$$

• Note that $P(2^{\omega})$ is an effective Polish space.

History of maximal orthogonal families

Question (Mauldin, circa 1980)

Can a **mof** in $P(2^{\omega})$ be analytic?

The answer turned out to be 'no':

Theorem (Preiss-Rataj, 1985)

There is no analytic **mof** in $P(2^{\omega})$.

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In L, there is a Π_1^1 mof in $P(2^{\omega})$.

In fact:

Theorem

If there is a Σ_2^1 **mof** in $P(2^{\omega})$, there is a Π_1^1 **mof**.

Mofs and forcing

Mofs are fragile creatures:

Facts

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- If there is a Cohen real over L, there are no Σ¹₂ mofs in P(2^ω) (F-T, 2009)
- The same holds if there is a random real over L (Fischer-Friedman-Törnquist, 2010).
- The same holds if there is a Mathias real over L (S-Törnquist, 2015).

Question (F-T, 2009)

If there is a Π_1^1 mof, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Π_1^1 mofs in extensions of L

Theorem (S-Törnquist, 2015)

If s is Sacks over L there is a (lightface!) Π_1^1 mof in L[s].

Theorem (S 2016)

The statement 'there is a Π_1^1 **mof** ' is consistent with $2^{\omega} = \omega_2$.

In fact :

Theorem (S 2016)

Let R be a binary Σ_1^1 relation on an effective Polish space X. If \bar{s} is generic for iterated Sacks forcing over L, there is a (lightface) Δ_2^1 maximal \mathcal{R} -discrete set in L[\bar{s}].

Here is the main idea of the proof in the case of adding a single Sacks real.

Assume *R* is symmetric (otherwise, look at $R \cup R^{-1}$).

Of course Sacks forcing S is the set of *perfect trees* $p \subseteq 2^{<\omega}$, ordered by inclusion and [*p*] is the set of branches through *p*.

We need the following theorem of Galvin:

Theorem (Galvin's Theorem)Let $p \in \mathbb{S}$ and $c : [p]^2 \rightarrow \{0, 1\}$ be symmetric and Baire measurable.Then there is $q \in \mathbb{S}$, $q \leq p$ such that c is constant on $[q]^2 \setminus diag$

The m.d. set will be a union of ω_1 -many perfect sets:

For some for sequence of perfect sets $\langle P_{\xi} | \xi < \omega_1 \rangle \in \mathbf{L}$, our m.d. set is just

$$\bigcup_{\xi<\omega_1}\bar{P}_\xi^{\mathsf{L}[s]}.$$

We construct this sequence by induction: Say we have $\langle P_{\nu} \mid \nu < \xi \rangle \in L$, and say we have $p \in S$ and a S-name which are candidates for

 $p \Vdash \dot{x}$ is not in our family.

So assume that $p \Vdash (\forall y \in \bigcup_{\nu < \xi} \bar{P_{\nu}}) \neg (\dot{x} R y)$.

We can also assume \dot{x} is given by a continuous function $f: 2^{\omega} \rightarrow X$:

$$p \Vdash \dot{x} = f(s_{\dot{G}}).$$

It is easy to thin out *p* so that

$$(\forall x \in f''[p])(\forall y \in \bigcup_{\nu < \xi} P_{\nu}) \neg (x R y).$$

Further thin out such that either:

- f"[p] is R-discrete
- **2** f''[p] is *R*-complete, i.e. $(\forall x, y \in f''[p]) \times R y$.

In the first case, let $P_{\xi} = f''[p]$. As

$$p \Vdash \dot{x} = f(s_{\dot{G}}) \in \bar{P}_{\xi}$$

we have dealt with this candidate.

In the second case, let $P_{\xi} = \{f(z)\}$, where z is the left-most branch through p. By Shoenfield absoluteness

$$p\Vdash \dot{x}=f(s_{\dot{G}}) R f(z),$$

so we have again dealt with this candidate.

In either case, $\bigcup_{\nu \leq \xi} P_{\nu}$ is discrete. By Π_1^1 absoluteness, this will hold for $\bigcup_{\xi < \omega_1} \bar{P}_{\xi}^{\mathbf{L}[s]}$ as well. As there are only ω_1 -many pairs (\dot{x}, p) as above, we can ensure

maximality.

A basis for \mathbb{R} over \mathbb{Q}

Let $X = \mathbb{R}$ and let *R* be the set of finite tuples from *X* which are linearly dependent over \mathbb{Q} .

A more involved proof but using similar ideas as in the previous sketch (including a generalization of Galvin's theorem to k-tuples due to Blass) gives us:

Theorem (S 2016)

If s is a Sacks real over L, there is a Π^1_1 basis for \mathbb{R} over \mathbb{Q} in L[s].

What is Galvin's Theorem for iterated Sacks forcing?

- Let \overline{P} be iterated Sacks forcing and $\overline{p} \in \mathbb{P}$. What is $[\overline{p}]$?
- Provided we can define [p
]...

Question:

```
Is there for every \bar{p} \in \mathbb{P} and every
```

```
\textit{c}\colon [\bar{\textit{p}}]^2 \to \{0,1\}
```

which is symmetric and *nice*, some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that *c* is constant on $[\bar{q}]^2 \setminus \text{diag}$?

What do I mean by nice?

 Answer is 'yes' for *c* which is *continuous* on [p̄]² \ diag (Geschke-Kojman-Kubiś-Schipperus)

• perhaps Baire measurable...?

For a dense set of $\bar{p} \in \mathbb{P}$ we have:

0 There is $F_0: [\bar{p}(0)] \rightarrow \text{PERFECT TREES}$ and $\sigma_1 \in \text{supp}(\bar{p})$ such that $\bar{p} \Vdash \bar{p}(\sigma_1) = F_0(\bar{s}_{\dot{G}}(0))$

1 There is a continuous function F_1 and $\sigma_2 \in \text{supp}(\bar{p})$ such that (letting $\sigma_0 = 0$)

$$\bar{p} \Vdash \bar{p}(\sigma_2) = F_1(\bar{s}_{\dot{G}} \upharpoonright \sigma_2)$$

ω And so on: There exists sequences $F_0, ..., F_k, ...$ and $σ_0, ..., σ_k, ...$ with $σ_0 = 0$ such that the analogous holds for each k ∈ ω and

$$\{\sigma_k \mid k \in \omega\} = \operatorname{supp}(\bar{p})$$

Then $[\bar{p}]$ is the subspace of $(2^{\omega})^{\lambda}$ consisting of

 \bar{x} : supp $(\bar{p}) \rightarrow 2^{\omega}$

such that for each $n \in \omega$

 $\bar{\boldsymbol{x}}(\sigma_n) \in [\boldsymbol{F}_n(\bar{\boldsymbol{x}} \upharpoonright \sigma_n)]$

A counterexample

Let $\bar{p} \in \mathbb{P}$. Fix $\xi < \lambda$.

Define a symmetric Borel function

$$egin{aligned} c\colon [ar{p}]^2 &
ightarrow \{0,1\} \ c(ar{x}_0,ar{x}_1) &= egin{cases} 1 & ext{if }ar{x}_0(\xi)
eq ar{x}_1(\xi) \ 0 & ext{otherwise} \end{aligned}$$

Note:

bv

Every q̄ ≤ p̄ will meet both colours
c⁻¹(1) is open, c⁻¹(0) is closed.

For $\bar{x}_0, \bar{x}_1 \in [\bar{p}]$, let

 $\Delta(\bar{x}_0, \bar{x}_1) =$ the least ξ such that $\bar{x}_0(\xi) \neq \bar{x}_1(\xi)$.

Let

$$\Delta_{\xi} = \{ (\bar{x}_0, \bar{x}_1) \in [\bar{p}]^2 \mid \Delta(\bar{x}_0, \bar{x}_1) = \xi \}$$

- Δ_0 is comeager in $[\bar{p}]^2$
- So nice must be more restrictive than Baire measurable!
- otherwise: take *c* arbitrary on Δ_{ξ} , $\xi > 0$ (a meager set!)

Another counterexample:

Fix a bijection $G: \operatorname{supp}(\bar{p}) \to \omega$. Define a symmetric function

$$c\colon [\bar{p}]^2 \to \{0,1\}$$

as follows:

Suppose we have $\bar{x}_0, \bar{x}_1 \in [\bar{p}]$ and suppose $\bar{x}_0 <_{\text{lex}} \bar{x}_1$. Let

$$\xi = \Delta(\bar{x}_0, \bar{x}_1).$$

If $\xi \in \operatorname{supp}(\bar{p})$ and $G(\xi) = k$, set

$$c(\bar{x}_0,\bar{x}_1)=\bar{x}_i(0)(k).$$

(When $\xi \in \text{supp}(\bar{p})$ fails, set *c* to be 0; this case is irrelevant) Now if $c(\cdot, \cdot)$ only depends on $\Delta(\cdot, \cdot)$ on some [q], [q(0)] can contain at most *two* branches, contradiction.

The solution:

Theorem (Galvin's Theorem for iterated Sacks forcing) For every $\bar{p} \in \mathbb{P}$ and every symmetric universally Baire

 $c\colon [\bar{p}]^2 \to \{0,1\}$

there is $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$, with an enumeration $\langle \sigma_k | k \in \omega \rangle$ of supp (\bar{q}) and a function N: supp $(\bar{q}) \rightarrow \omega$ such that for $(\bar{x}_0, \bar{x}_1) \in [\bar{q}]^2 \setminus \text{diag}$, the value of $c(\bar{x}_0, \bar{x}_1)$ only depends on

$$\xi = \Delta(\bar{x}_0, \bar{x}_1)$$

and the following (finite) piece of information:

 $(\bar{x}_0 \upharpoonright K, \bar{x}_1 \upharpoonright K)$

where $K = \{\sigma_0, \ldots, \sigma_{N(\xi)}\} \times N(\xi)$.

Example 5: Cofinitary groups

- Work in the space S_∞, the group of bijections from N to itself (permutations).
- $id_{\mathbb{N}}$ is the identity function on \mathbb{N} , the neutral element of S_{∞} .

Definition

We say $g \in S_\infty$ is *cofinitary* \iff

$${n \in \mathbb{N} \mid g(n) = n}$$
 is finite.

 $\mathcal{G} \leq S_{\infty}$ is *cofinitary* \iff every $g \in \mathcal{G} \setminus \{ \mathsf{id}_{\mathbb{N}} \}$ is cofinitary.

Definability of mcgs

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history:

- Gao-Zhang: If $\mathbf{V} = \mathbf{L}$, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If $\mathbf{V} = \mathbf{L}$, there is a Π_1^1 mcg.
- Fischer-S.-Törnquist, 2015: The existence of a Π¹₁ mcg is consistent with arbitrarily large continuum.

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By $\underline{\Sigma}_2^1$ absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future paper.

Thank You!