
Infinite Combinatorics, Definability, and Forcing

David Schrittesser

University of Copenhagen (Denmark)

RIMS Workshop on
Infinite Combinatorics and Forcing Theory

Schrittesser (Copenhagen) Combinatorics, Definability & Forcing RIMS 2016 1 / 25



Discrete sets

Let R be a binary relation on a set X .

Definition
We say a set A ⊆ X is discrete (w.r.t. R) ⇐⇒ no two distinct
elements x , y of A are R-related.

Definition
We call such a set maximal discrete (w.r.t. R; short R-m.d.) if it is not
a proper subset of any discrete set.

A is maximal discrete iff A is discrete and for any x ∈ X \ A

(∃a ∈ A) (a R x) ∨ (x R a)
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Discrete sets (non-binary)

Let X be a set and R ⊆ X<ω.

Definition
We say a set A ⊆ X is discrete (w.r.t. R) ⇐⇒ A<ω ∩ R = ∅.

The notion of maximal discrete set is defined as before.

A is maximal discrete iff A is discrete and for any x ∈ X \ A

(∃y0, . . . , yn ∈ A ∪ {x}) (y0, . . . , yn) ∈ R.

While maximal discrete sets always exist (under AC), one can study
under which circumstances they can be definable.
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Examples

There are many interesting examples where X is an effective Polish
space and R is Borel:

Binary

Transversals for equivalence relations
mad families
maximal eventually different families
maximal orthogonal families of measures

Higher arity

Hamel basis of R over Q
Cofinitary groups

. . . and many more.
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Example 1: mad families

Let X = [ω]ω.

Define R ⊆ X 2 as follows: For x , y ∈ X ,

x R y ⇐⇒ x ∩ y is infinite.

A mad family is an infinite maximal discrete set w.r.t. R.
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Some facts about mad families

1 I There is no analytic mad family (Mathias, 1968).
I There is a (lightface) Π1

1 mad family in L (A. R. Miller, 1987).
I If there is a Σ1

2 mad family, there is a Π1
1 mad family (Törnquist,

2013).

2 I One can find mad families which remain mad after forcing (for
various forcings; many authors).

I In particular, the existence of a Π1
1 mad family is consistent with

arbitrary values for 2ω.

3 One can force that there are no definable mad families:
I Mathias, ca. 1969: from a Mahlo,
I Törnquist, 2015: from an inaccessible (no mad families in Solovay’s

model),
I Horowitz-Shelah, 2016: from ZFC.
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“there is no projective R-m.d. family” is equiconsistent with ZFC in
several other cases, as well:

maximal eventually different families of functions
(Brendle-Khomskii, unpublished)
maximal orthogonal families of measures (Fischer-Törnquist,
2010); This is because the same holds for “every projective set
has the Baire property”

Example 2

The statement that there are no definable R-m.d. sets can have large
cardinal strength:

Theorem (Horowitz-Shelah, 2016)
There is a Borel binary relation R on 2ω (in fact, a graph relation) such
that “there is no projective R-m.d. set” is equiconsistent with the
existence of an inaccessible cardinal.
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Example 3

Let X = ωω and for f ,g ∈ X let

f R g ⇐⇒ {n | f (n) = g(n)} is infinite.

A (maximal) discrete set w.r.t. R is a (maximal) eventually different
family.

Theorem (Horowitz-Shelah, 2016)
(ZF) There is a Borel maximal eventually different family.

Such a family remains m.d. in any larger universe.
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Example 4: Orthogonality of measures

Let P(2ω) be the set of Borel probability measures on 2ω.

Two measures µ, ν ∈ P(2ω) are said to be orthogonal, written

µ ⊥ ν

exactly if: there is a Borel set A ⊆ 2ω such that

µ(A) = 1

and
ν(A) = 0.

Note that P(2ω) is an effective Polish space.
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History of maximal orthogonal families
Question (Mauldin, circa 1980)
Can a mof in P(2ω) be analytic?

The answer turned out to be ‘no’:

Theorem (Preiss-Rataj, 1985)
There is no analytic mof in P(2ω).

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In L, there is a Π1
1 mof in P(2ω).

In fact:

Theorem
If there is a Σ1

2 mof in P(2ω), there is a Π1
1 mof.
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Mofs and forcing
Mofs are fragile creatures:

Facts
1 Adding any real destroys maximality of mofs from the

groundmodel (observed by Ben Miller; not restricted to forcing
extensions)

2 If there is a Cohen real over L, there are no Σ1
2 mofs in P(2ω)

(F-T, 2009)
3 The same holds if there is a random real over L

(Fischer-Friedman-Törnquist, 2010).
4 The same holds if there is a Mathias real over L (S-Törnquist,

2015).

Question (F-T, 2009)

If there is a Π1
1 mof, does it follow that P(ω) ⊆ L?
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Π1
1 mofs in extensions of L

Theorem (S-Törnquist, 2015)

If s is Sacks over L there is a (lightface!) Π1
1 mof in L[s].

Theorem (S 2016)

The statement ‘there is a Π1
1 mof ’ is consistent with 2ω = ω2.

In fact :

Theorem (S 2016)

Let R be a binary Σ1
1 relation on an effective Polish space X. If s̄ is

generic for iterated Sacks forcing over L, there is a (lightface) ∆1
2

maximal R-discrete set in L[s̄].
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Here is the main idea of the proof in the case of adding a single Sacks
real.

Assume R is symmetric (otherwise, look at R ∪ R−1).

Of course Sacks forcing S is the set of perfect trees p ⊆ 2<ω, ordered
by inclusion and [p] is the set of branches through p.

We need the following theorem of Galvin:

Theorem (Galvin’s Theorem)
Let p ∈ S and

c : [p]2 → {0,1}

be symmetric and Baire measurable.
Then there is q ∈ S, q ≤ p such that c is constant on

[q]2 \ diag
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The m.d. set will be a union of ω1-many perfect sets:
For some for sequence of perfect sets 〈Pξ | ξ < ω1〉 ∈ L, our m.d. set is
just ⋃

ξ<ω1

P̄ξ
L[s]

.

We construct this sequence by induction: Say we have
〈Pν | ν < ξ〉 ∈ L, and say we have p ∈ S and a S-name which are
candidates for

p  ẋ is not in our family.

So assume that p  (∀y ∈
⋃
ν<ξ P̄ν)¬(ẋ R y).

We can also assume ẋ is given by a continuous function f : 2ω → X :

p  ẋ = f (sĠ).

It is easy to thin out p so that

(∀x ∈ f ′′[p])(∀y ∈
⋃
ν<ξ

Pν)¬(x R y).
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Further thin out such that either:
1 f ′′[p] is R-discrete
2 f ′′[p] is R-complete, i.e. (∀x , y ∈ f ′′[p]) x R y .

In the first case, let Pξ = f ′′[p]. As

p  ẋ = f (sĠ) ∈ P̄ξ

we have dealt with this candidate.
In the second case, let Pξ = {f (z)}, where z is the left-most branch
through p. By Shoenfield absoluteness

p  ẋ = f (sĠ) R f (z),

so we have again dealt with this candidate.
In either case,

⋃
ν≤ξ Pν is discrete. By Π1

1 absoluteness, this will hold

for
⋃
ξ<ω1

P̄ξ
L[s] as well.

As there are only ω1-many pairs (ẋ ,p) as above, we can ensure
maximality.
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A basis for R over Q

Let X = R and let R be the set of finite tuples from X which are linearly
dependent over Q.

A more involved proof but using similar ideas as in the previous sketch
(including a generalization of Galvin’s theorem to k -tuples due to
Blass) gives us:

Theorem (S 2016)

If s is a Sacks real over L, there is a Π1
1 basis for R over Q in L[s].
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What is Galvin’s Theorem for iterated Sacks forcing?

Let P̄ be iterated Sacks forcing and p̄ ∈ P. What is [p̄]?
Provided we can define [p̄]. . .

Question:
Is there for every p̄ ∈ P and every

c : [p̄]2 → {0,1}

which is symmetric and nice, some q̄ ∈ P, q̄ ≤ p̄ such that c is
constant on [q̄]2 \ diag?

What do I mean by nice?
Answer is ‘yes’ for c which is continuous on [p̄]2 \ diag
(Geschke-Kojman-Kubiś-Schipperus)
perhaps Baire measurable. . . ?
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For a dense set of p̄ ∈ P we have:
0 There is F0 : [p̄(0)]→ PERFECT TREES and σ1 ∈ supp(p̄) such that

p̄  p̄(σ1) = F0(s̄Ġ(0))

1 There is a continuous function F1 and σ2 ∈ supp(p̄) such that
(letting σ0 = 0)

p̄  p̄(σ2) = F1(s̄Ġ � σ2)

ω And so on: There exists sequences F0, . . . ,Fk , . . . and
σ0, . . . , σk , . . . with σ0 = 0 such that the analogous holds for each
k ∈ ω and

{σk | k ∈ ω} = supp(p̄)

Then [p̄] is the subspace of (2ω)λ consisting of

x̄ : supp(p̄)→ 2ω

such that for each n ∈ ω

x̄(σn) ∈ [Fn(x̄ � σn)]
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A counterexample

Let p̄ ∈ P. Fix ξ < λ.

Define a symmetric Borel function

c : [p̄]2 → {0,1}

by

c(x̄0, x̄1) =

{
1 if x̄0(ξ) 6= x̄1(ξ)

0 otherwise

Note:
Every q̄ ≤ p̄ will meet both colours
c−1(1) is open, c−1(0) is closed.
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For x̄0, x̄1 ∈ [p̄], let

∆(x̄0, x̄1) = the least ξ such that x̄0(ξ) 6= x̄1(ξ).

Let
∆ξ = {(x̄0, x̄1) ∈ [p̄]2 | ∆(x̄0, x̄1) = ξ}

∆0 is comeager in [p̄]2

So nice must be more restrictive than Baire measurable!
otherwise: take c arbitrary on ∆ξ, ξ > 0 (a meager set!)

Schrittesser (Copenhagen) Combinatorics, Definability & Forcing RIMS 2016 20 / 25



Another counterexample:
Fix a bijection G : supp(p̄)→ ω.
Define a symmetric function

c : [p̄]2 → {0,1}

as follows:

Suppose we have x̄0, x̄1 ∈ [p̄] and suppose x̄0 <lex x̄1. Let

ξ = ∆(x̄0, x̄1).

If ξ ∈ supp(p̄) and G(ξ) = k , set

c(x̄0, x̄1) = x̄i(0)(k).

(When ξ ∈ supp(p̄) fails, set c to be 0; this case is irrelevant)

Now if c(·, ·) only depends on ∆(·, ·) on some [q], [q(0)] can contain at
most two branches, contradiction.
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The solution:

Theorem (Galvin’s Theorem for iterated Sacks forcing)
For every p̄ ∈ P and every symmetric universally Baire

c : [p̄]2 → {0,1}

there is q̄ ∈ P, q̄ ≤ p̄, with an enumeration 〈σk | k ∈ ω〉 of supp(q̄) and
a function N : supp(q̄)→ ω such that for (x̄0, x̄1) ∈ [q̄]2 \ diag, the value
of c(x̄0, x̄1) only depends on

ξ = ∆(x̄0, x̄1)

and the following (finite) piece of information:

(x̄0 � K , x̄1 � K )

where K = {σ0, . . . , σN(ξ)} × N(ξ).
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Example 5: Cofinitary groups

Work in the space S∞, the group of bijections from N to itself
(permutations).
idN is the identity function on N, the neutral element of S∞.

Definition
We say g ∈ S∞ is cofinitary ⇐⇒

{n ∈ N | g(n) = n} is finite.

G ≤ S∞ is cofinitary ⇐⇒ every g ∈ G \ {idN} is cofinitary.
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Definability of mcgs

Theorem (Kastermans)
No mcg can be Kσ.

Some history:
Gao-Zhang: If V = L, there is a mcg with a Π1

1 set of generators.
Kastermans: If V = L, there is a Π1

1 mcg.
Fischer-S.-Törnquist, 2015: The existence of a Π1

1 mcg is
consistent with arbitrarily large continuum.

Theorem (Horowitz-Shelah, 2016)
(ZF) There is a Borel maximal cofinitary group.

By Σ1
2 absoluteness, a Borel mcg remains maximal in any outer model.

They also claim they will show there is a closed mcg in a future paper.
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Thank You!
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