On strong negation of FRP

Hiroshi Sakai

Kobe University

RIMS Set Theory Workshop 2016 November 29, 2016

イロト 不得下 イヨト イヨト

Notation

Let λ be a regular cardinal $\geq \omega_2$.

• For a regular $\mu < \lambda$ let

$$E^{\lambda}_{\mu} := \{ \alpha < \lambda \mid \operatorname{cof}(\alpha) = \mu \} .$$

- Suppose S ⊆ E^λ_ω. A ladder system on S is a sequence b = ⟨b_α | α ∈ S⟩ s.t. each b_α is an unbounded subset of α of order-type ω.
- For a ladder system $ec{b}=\langle b_lpha\mid lpha\in S
 angle$ on $S\subseteq E_\omega^\lambda$ let

$$\begin{split} X_{\vec{b}} &:= \{ x \in [\lambda]^{\omega} \mid \sup(x) \in S \& |x \cap b_{\sup(x)}| = \omega \} , \\ Y_{\vec{b}} &:= \{ x \in [\lambda]^{\omega} \mid \sup(x) \in S \& |x \cap b_{\sup(x)}| < \omega \} . \end{split}$$

Both $X_{\vec{b}}$ and $Y_{\vec{b}}$ are stationary in $[\lambda]^{\omega}$ if S is stationary in λ .

イロト イヨト イヨト イヨト

Fodor-type Reflection Principle (FRP)

Defenition (Fuchino-Juhász-Soukup-Szentmiklóssy-Usuba)

• For a regular cardinal $\lambda \geq \omega_2$, $FRP(\lambda) \equiv \text{ for any stationary } S \subseteq E_{\omega}^{\lambda} \text{ and any ladder system } \vec{b} \text{ on } S$ there are stationary many $\gamma \in E_{\omega_1}^{\lambda}$ such that $X_{\vec{b}} \cap [\gamma]^{\omega}$ is stationary in $[\gamma]^{\omega}$.

• FRP \equiv FRP(λ) for all regular $\lambda \geq \omega_2$.

Theorem (F-J-S-S-U, Fuchino-Soukup-Sakai-Usuba)

FRP is equivalent to each of the following assertions:

- For any locally compact topological space X, if X is non-metrizable, then there is a non-metrizable Y ⊆ X of size ω₁.
- If G is a graph with col(G) > ω, then there is H ⊆ G of size ω₁ with col(H) > ω.

イロト イ団ト イヨト イヨト

If a strongly compact cardinal is Lévy collapsed to $\omega_{\rm 2},$ then FRP holds.

Theorem (F-J-S-S-U)
FRP(
$$\lambda^+$$
) $\Rightarrow \neg \Box_{\lambda}$.

イロト イヨト イヨト イヨト

Strong negation of FRP

Let λ be a regular cardinal $\geq \omega_2$.

 $\neg \mathsf{FRP}(\lambda) \Leftrightarrow$ There are a stationary $S \subseteq E_{\omega}^{\lambda}$ and a ladder system \vec{b} on S s.t. there are club many $\gamma \in E_{\omega_1}^{\lambda}$ with $X_{\vec{b}} \cap [\gamma]^{\omega}$ nonstationary in $[\gamma]^{\omega}$.

Defenition (Strong Negation of FRP)

- $\begin{array}{l} {\rm SNFRP}(\lambda) \equiv \mbox{ For any stationary } S \subseteq E_{\omega}^{\lambda} \mbox{ and any ladder system } \vec{b} \mbox{ on } S \\ {\rm there are club many } \gamma \in E_{\omega_1}^{\lambda} \mbox{ such that } X_{\vec{b}} \cap [\gamma]^{\omega} \mbox{ is nonstationary } \\ {\rm in } [\gamma]^{\omega}. \end{array}$
 - $\Leftrightarrow \text{ For any ladder system } \vec{b} \text{ on } E_{\omega}^{\lambda} \text{ there are club many } \gamma \in E_{\omega_1}^{\lambda} \text{ s.t.} \\ X_{\vec{b}} \cap [\gamma]^{\omega} \text{ is nonstatioanry in } [\gamma]^{\omega}.$
 - $\Leftrightarrow \text{ For any ladder system } \vec{b} \text{ on } E_{\omega}^{\lambda} \text{ there are club many } \gamma \in E_{\omega_1}^{\lambda} \text{ s.t.} \\ Y_{\vec{b}} \cap [\gamma]^{\omega} \text{ contains a club set in } [\gamma]^{\omega}.$

• SNFRP(λ) is a very strong reflection principle for $Y_{\vec{b}}$.

・ロト ・回ト ・ヨト ・ヨト

General Questions

- Is SNFRP(λ) consistent?
- **2** Are there statements in topology or graph theory equivalent to $SNFRP(\lambda)$?

< ロ > < 同 > < 三 > < 三

Inconsistency of SNFRP

Defenition (Partial square)

For an uncountable cardinal λ ,

$$\mathbb{J}^{p}_{\lambda}\equiv$$
 there are a stationary $T\subseteq \mathsf{E}^{\lambda^{+}}_{\omega_{1}}$ and a sequence $\langle c_{\gamma}\mid \gamma\in T
angle$ s.t.

- c_{γ} is a club subset of γ of order-type ω_1 ,
- if $\alpha \in \operatorname{Lim}(c_{\gamma}) \cap \operatorname{Lim}(c_{\delta})$, then $c_{\gamma} \cap \alpha = c_{\delta} \cap \alpha$.

Fact (Shelah)

- \Box_{λ} implies \Box_{λ}^{p} .
- (Shelah) \Box^{p}_{λ} holds for every regular cardinal $\lambda \geq \omega_{2}$.

Proposition 1

 \Box_{λ}^{p} implies that SNFRP(λ^{+}) fails for any uncountable cardinal λ . In particular, SNFRP(λ^{+}) fails for any regular $\lambda \geq \omega_{2}$.

イロト イヨト イヨト イヨト

Proof of Proposition 1

 $\square_{\lambda}^{p} \equiv \text{ There are a stationary } T \subseteq E_{\omega_{1}}^{\lambda^{+}} \text{ and a sequence } \langle c_{\gamma} \mid \gamma \in T \rangle \text{ s.t.}$

- c_{γ} is a club subset of γ of order-type ω_1 ,
- if $\alpha \in \operatorname{Lim}(c_{\gamma}) \cap \operatorname{Lim}(c_{\delta})$, then $c_{\gamma} \cap \alpha = c_{\delta} \cap \alpha$.

 $\begin{aligned} \mathsf{SNFRP}(\lambda^+) &\equiv \text{ For any ladder system } \vec{b} \text{ on } E_{\omega}^{\lambda^+} \text{ there are club many } \gamma \in E_{\omega_1}^{\lambda^+} \text{ s.t.} \\ X_{\vec{b}} \cap [\gamma]^{\omega} \text{ is nonstationary in } [\gamma]^{\omega}. \end{aligned}$

Proof of Proposition 1

• Let
$$S := \bigcup_{\gamma \in T} \operatorname{Lim}(c_{\gamma})$$
.
For each $\alpha \in S$, taking $\gamma \in T$ with $\alpha \in \operatorname{Lim}(c_{\gamma})$, let $c_{\alpha} := c_{\gamma} \cap \alpha$.

• For each $\gamma \in T$ the following X_{γ} is club in $[\gamma]^{\omega}$:

$$X_{\gamma} := \{x \in [\gamma]^{\omega} \mid \sup(x) \in \operatorname{Lim}(c_{\gamma}) \And c_{\gamma} \cap \sup(x) \subseteq x\} \;.$$

Moreover $X_{\gamma} \subseteq \{x \in [\gamma]^{\omega} \mid c_{\sup(x)} \subseteq x\}.$

 For each α ∈ S take an unbounded b_α ⊆ c_α of order-type ω. Then X_b ∩ [γ]^ω is stationary for every γ ∈ T.

イロト 不得下 イヨト イヨト

Prop. 1 leaves a possibility of that $SNFRP(\lambda)$ is consistent for the following λ :

ω₂

- successors of singular cardinals
- weakly inaccessible cardinals

Main Theorem SNFRP(ω_2) is consistent.

(日) (同) (三) (三)

Outline of consistency of $SNFRP(\omega_2)$

For a ladder system \vec{b} on $E_{\omega}^{\omega_2}$ let

 $\mathcal{T}_{\vec{b}} := \{\gamma \in \mathcal{E}_{\omega_1}^{\omega_2} \mid Y_{\vec{b}} \cap [\gamma]^{\omega} \text{ contains a club set in } [\gamma]^{\omega} \} \; .$

Starting from a model of MM, we will iterate club shootings through $T_{\vec{b}} \cup E_{\omega}^{\omega_2}$ for all ladder system \vec{b} on $E_{\omega}^{\omega_2}$:

- For a ladder system \vec{b} on $E_{\omega}^{\omega_2}$ let $\mathbb{C}(\vec{b})$ be the poset of all bounded closed subsets of $T_{\vec{b}} \cup E_{\omega}^{\omega_2}$ ordered by reverse inclusions.
- $\mathbb{C}(\vec{b})$ is σ -closed and has size 2^{ω_1} . So if $2^{\omega_1} = \omega_2$, then $\mathbb{C}(\vec{b})$ preserves all cardinals except for ω_2 .
- MM implies that $T_{\vec{b}}$ is stationary. So $\mathbb{C}(\vec{b})$ is $<\omega_2$ -Baire (thus preserves ω_2).
- Moreover we can prove that, under MM, any ω₁-support iteration of C(*b*)'s is < ω₂-Baire.
- So, under MM, we can construct an ω₁-support iteration of C(*b*) for all *b* without collapsing any cardinal.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Question

What is the consistency strength of $SNFRP(\omega_2)$?

Question

- **9** Is SNFRP(λ) consistent for λ a successor cardinal of a singular cardinal?
- **2** Is SNFRP(λ) consistent for a weakly inaccessible cardinal λ ?

(日) (同) (日) (日)

I have not found any statement in topology or graph theory equivalent to SNFRP. But there is one on infinite combinatorics.

Defenition

Suppose $S \subseteq E_{\omega}^{\omega_2}$. A ladder system $\vec{b} = \langle b_{\alpha} \mid \alpha \in S \rangle$ is said to be *strongly almost disjoint* if for any $\gamma < \omega_2$ there is a regressive function f on $S \cap \gamma$ such that $\langle b_{\alpha} \setminus f(\alpha) \mid \alpha \in S \cap \gamma \rangle$ is pairwise disjoint.

Theorem (F-J-S-S-U)

The following are equivalent:

Image: FRP(ω₂)

e For any stationary S ⊆ $E_{\omega}^{\omega_2}$ and any ladder system \vec{b} on S, \vec{b} is not strongly almost disjoint.

イロト イポト イヨト イヨト

Proposition 2

The following are equivalent:

- SNFRP(ω_2).
- **②** For any ladder system ⟨b_α | α ∈ E^{ω₂}_ω⟩ there is a club C ⊆ ω₂ such that ⟨b_α | α ∈ C ∩ E^{ω₂}_ω⟩ is strongly almost disjoint.

イロト イ団ト イヨト イヨト

Proof of (1) \Rightarrow (2)

- Take an arbitrary ladder system $\vec{b} = \langle b_{\alpha} \mid \alpha \in E_{\omega}^{\omega_2} \rangle$. Let $C \subseteq \omega_2$ be a club such that $Y_{\vec{b}}$ contains a club set for all $\gamma \in C \cap E_{\omega_1}^{\omega_2}$. Let $S := C \cap E_{\omega}^{\omega_2}$. For each $\gamma \in E_{\omega_1}^{\omega_2}$ we will find a regressive function f on $S \cap \gamma$ with $\langle b_{\alpha} \setminus f(\alpha) \mid \alpha \in S \cap \gamma \rangle$ pairwise disjoint.
- Let Z be the set of all $x \in [\omega_2]^\omega$ such that
 - $b_{\alpha} \subseteq x$ for all $\alpha \in S \cap x$,
 - $|x \cap b_{\alpha}| < \omega$ for all $\alpha \in S \setminus x$.

Then $Z \cap [\gamma]^{\omega}$ contains a club set for all $\gamma \in E_{\omega_1}^{\omega_2}$.

- Fix $\gamma \in E_{\omega_1}^{\omega_2}$. Let $\langle x_{\xi} | \xi < \omega_1 \rangle$ be a \subseteq -inc. cont. cof. sequence in $Z \cap [\gamma]^{\omega}$. Let ξ_{α} be such that $\alpha \in x_{\xi_{\alpha}+1} \setminus x_{\xi_{\alpha}}$.
- Take a regressive function g on $S \cap \gamma$ with $(b_{\alpha} \setminus g(\alpha)) \cap x_{\xi_{\alpha}} = \emptyset$. Note that if $\xi_{\alpha} \neq \xi_{\beta}$, then $b_{\alpha} \setminus g(\alpha)$ and $b_{\beta} \setminus g(\beta)$ are disjoint.
- Because each x_{ξ} is countalbe, we can take a regressive function h on $S \cap \gamma$ such that if $\xi_{\alpha} = \xi_{\beta}$, then $b_{\alpha} \setminus h(\alpha)$ and $b_{\beta} \setminus h(\beta)$ are disjoint.
- Then $f(\alpha) := \max(g(\alpha), h(\alpha))$ is as desired.

・ロン ・四 と ・ ヨン ・ ヨン

For $X \subseteq [\omega_2]^{\omega}$ we say that sup $\upharpoonright X$ is injective if sup $(x) \neq sup(y)$ for any distinct $x, y \in X$.

Open Problem

Is it consistent that there is no stationary $X \subseteq [\omega_2]^{\omega}$ with sup $\upharpoonright X$ injective.

We say that $X \subseteq [\omega_2]^{\omega}$ is *reflecting stationary* if there are stationary many $\gamma < \omega_2$ with $X \cap [\gamma]^{\omega}$ is stationary.

Proposition 3

SNFRP(ω_2) implies that there is no reflecting stationary $X \subseteq [\omega_2]^{\omega}$ with sup $\upharpoonright X$ injective.

・ロン ・四 と ・ ヨン ・ ヨン