Reflection theorems on non-existence of orthonormal bases of pre-Hilbert spaces

Sakaé Fuchino (渕野 昌) Graduate School of System Informatics Kobe University (神戸大学大学院 システム情報学研究科)

http://fuchino.ddo.jp/index-j.html

RIMS Workshop on Infinite Combinatorics and Forcing Theory (2016年12月04日 (20:46 JST) version) 2016年11月29日 (於京都大学 数理解析研究所) This presentation is typeset by pLTEX with beamer class. These slides are downloadable as http://fuchino.ddo.jp/slides/RIMS-set-theory-16pf.pdf

Orthonormal bases of a pre-Hilbert space

- We fix K = ℝ or ℂ (all of the following arguments work for both of the scalar fields). In this talk, we work throughout in ZFC.
- ► An inner-product space over K is also called a pre-Hilbert space (over K).
- For a pre-Hilbert space with the inner product (x, y) ∈ K for x, y ∈ X, B ⊆ X is orthonormal if (x, x) = 1 and (x, y) = 0 for all distinct x, y ∈ B.
- ▶ $B \subseteq X$ is an orthonormal basis of X if B is orthonormal and spans a K-subspace of X which is dense in X.

If $B \subseteq X$ is an orthonormal basis of X then B is a maximal orthonormal system of X.

 \triangleright If X is not complete the reverse implication is not necessary true!

Orthonormal bases of a pre-Hilbert space (2/2)

If $B \subseteq X$ is an orthonormal basis of X then B is a maximal orthonormal system of X.

pre-Hilbert spaces (3/12)

(日)

 \triangleright If X is not complete the reverse implication is not necessary true!

Example 1. Let X be the sub-inner-product-space of $\ell_2(\omega + 1)$ spanned by $\{e_n^{\omega+1} : n \in \omega\} \cup \{b\}$ where $b \in \ell_2(\omega + 1)$ is defined by (1) $b(\omega) = 1$; (2) $b(n) = \frac{1}{n+2}$ for $n \in \omega$. Then $B = \{e_n^{\omega+1} : n \in \omega\}$ is a maximal orthonormal system in X but it is not a basis of X.

▶ Note that X in Example 1 has an orthonormal basis.

Pre-Hilbert spaces without orthonormal bases

Lemma 2. (P. Halmos 196?) There are pre-Hilbert spaces X of dimension \aleph_0 and density λ for any $\aleph_0 < \lambda \leq 2^{\aleph_0}$.

Proof. Let *B* be a linear basis (Hamel basis) of the linear space $\ell_2(\omega)$ extending $\{\mathbb{e}_n^{\omega} : n \in \omega\}$. Note that $|B| = 2^{\aleph_0}$ (Let \mathcal{A} be an almost disjoint family of infinite subsets of ω of cardinality 2^{\aleph_0} . For each $a \in \mathcal{A}$ let $\mathbb{b}_a \in \ell_2(\omega)$ be s.t. $\operatorname{supp}(\mathbb{b}_a) = a$. Then $\{\mathbb{b}_a : a \in \mathcal{A}\}\$ is a linearly independent subset of $\ell_2(\omega)$ of cardinality 2^{\aleph_0}). Let $f : B \to \{e_{\alpha}^{\lambda} : \alpha < \lambda\} \cup \{\mathbb{O}_{\ell_2(\lambda)}\}$ be a surjection s.t. $f(\mathbb{e}_n^{\omega}) = \mathbb{O}_{\ell_2(\lambda)}$ for all $n \in \omega$. Note that f generates a linear mapping from the linear space $\ell_2(\omega)$ to a dense subspace of $\ell_2(\lambda)$. Let $U = \{ \langle \mathbb{D}, f(\mathbb{D}) \rangle : \mathbb{D} \in B \}$ and $X = [U]_{\ell_2(\omega) \oplus \ell_2(\lambda)}$. Then this X is as desired since $\{\langle e_n^{\omega}, 0 \rangle : n \in \omega\}$ is a maximal orthonormal system in X while we have $\operatorname{cls}_{\ell_2(\omega)\oplus\ell_2(\lambda)}(X) = \ell_2(\omega)\oplus\ell_2(\lambda)$ and hence $d(X) = \lambda$.

Dimension and density of a pre-Hilbert space

pre-Hilbert spaces (5/12)

(日)

▶ With practically the same proof, we can also show:

Lemma 3. (A generalization of P. Halmos' Lemma) For any cardinal κ and λ with $\kappa < \lambda \leq \kappa^{\aleph_0}$, there are (pathological) pre-Hilbert spaces of dimension κ and density λ .

The dimension and density of a pre-Hilbert space cannot be more far apart:

Proposition 4. (D. Buhagiara, E. Chetcutib and H. Weber 2008) For any pre-Hilbert space X, we have $d(X) \le |X| \le (\dim(X))^{\aleph_0}$.

The proof of Proposition 4.

Pathological pre-Hiblert spaces

- ► We call a pre-Hilbert space X without any orthonormal bases pathological.
- If X is pathological then d(X) > ℵ₀ (if d(X) = ℵ₀ we can construct an orthonormal basis by Gram-Schmidt process).
- There are also pathological pre-Hilbert spaces X with dim(X) = d(X) = κ for all uncountable κ (see Corollary 7 on the next slide).
- Thus there are non-separable pre-Hilbert spaces without orthonormal basis in all possible combination of dimension and density.

Characterization of pathology

pre-Hilbert spaces (7/12)

Lemma 5. Suppose that X is a pre-Hilbert space with an orthonormal basis (i.e. non-pathological) and X is a dense linear subspace of $\ell_2(\kappa)$. If χ is a large enough regular cardinal, and $M \prec \mathcal{H}(\chi)$ is s.t. $X \in M$ then $X = X \downarrow (\kappa \cap M) \oplus X \downarrow (\kappa \setminus M)$.

Theorem 6. Suppose that X is a pre-Hilbert space and X is a dense linear subspace of $\ell_2(S)$. Then X is non-pathological if and only if there is a partition $\mathcal{P} \subseteq [S]^{\leq \aleph_0}$ of S s.t. $X = \overline{\bigoplus}_{A \in \mathcal{P}} X \downarrow A$.

Proof. For \Rightarrow use Lemma 5 (with countable *M*'s) repeatedly.

Corollary 7. Suppose that X and Y are pre-Hilbert spaces if one of them is pathological then $X \oplus Y$ is also pathological.

Corollary 8. For any uncountable cardinal κ , there is a pathological pre-Hilbert space X of dimension and density κ .

Proof. Let X_0 be Halmos' pre-Hilbert space with density \aleph_1 . By Corollary 7, $X = X_0 \oplus \ell_2(\kappa)$ will do.

Another construction of pathological pre-Hilbert spaces pre-Hilbert spaces (8/12)

Theorem 9. Assume that $ADS^{-}(\kappa)$ holds for a regular cardinal $\kappa > \omega_1$. Then there is a pathological linear subspace X of $\ell_2(\kappa)$ dense in $\ell_2(\kappa)$ s.t. $X \downarrow \beta$ is non-pathological for all $\beta < \kappa$. Furthermore for any regular $\lambda < \kappa$, $\{S \in [\kappa]^{\lambda} : X \downarrow S \text{ is non-pathological}\}$ contains a club subset of $[\kappa]^{\lambda}$.

Remark 10. The theorem above implies that the Fodor-type Reflection Principle follows from the global reflection of pathology of pre-Hilbert spaces down to subspaces of density $< \aleph_2$.

Sketch of the proof of Theorem 9: Let $\langle A_{\alpha} : \alpha \in E \rangle$ be an ADS⁻(κ)-sequence on a stationary $E \subseteq E_{\kappa}^{\omega}$.

- Let ⟨uξ : ξ < κ⟩ be a sequence of elements of ℓ₂(κ) s.t.
 (1) uξ = eξ for all ξ ∈ κ \ E,
 (2) supp(uξ) = Aξ ∪ {ξ} for all ξ ∈ E.
 Let U = {uξ : ξ < κ} and X = [U]_{ℓ2(κ)}.
- This X is as desired.

Singular Compactness

The following theorem can be proved analogously to the proof of the Shelah Singular Compactness Theorem given in [Hodges, 1981]:

Theorem 11. Suppose that λ is a singular cardinal and X is a pre-Hilbert space which is a dense sub-inner-product-space of $\ell_2(\lambda)$. If X is pathological then there is a cardinal $\lambda' < \lambda$ s.t. (1) $\{u \in [\lambda]^{\kappa^+} : X \downarrow u \text{ is a pathological pre-Hilbert space}\}$ is stationary in $[\lambda]^{\kappa^+}$ for all $\lambda' < \kappa < \lambda$.

Fodor-tpye Reflection Principle

Theorem 12. TFAE over ZFC:

- (a) Fodor-type Reflection Principle (FRP);
- (b) For any regular κ > ω₁ and any linear subspace X of ℓ₂(κ) dense in ℓ₂(κ), if X is pathological then
 (1) S_X = {α < κ : X ↓ α is pathological}

is stationary in κ ;

(c) For any regular $\kappa > \omega_1$ and any dense sub-inner-product-space X of $\ell_2(\kappa)$, if X is pathological then

(2) $S_X^{\aleph_1} = \{ U \in [\kappa]^{\aleph_1} : X \downarrow U \text{ is pathological} \}$ is stationary in $[\kappa]^{\aleph_1}$.

Proof. "(a) \Rightarrow (b), (c)": By induction on d(X). Use Theorem 11 for singular cardinal steps.

• " $\neg(a) \Rightarrow \neg(b) \land \neg(c)$ ": By Theorem 9 and Theorem 11a (on the extra slide with the definition of FRP).

FRP is a "mathematical reflection principle"

pre-Hilbert spaces (11/12)

- The FRP is known to be equivalent to each of the following "mathematical" assertions:
 - (A) For every locally countably compact topological space X, if all subspaces of X of cardinality ≤ ℵ₁ are metrizable, then X itself is also metrizable.
 - (B) Any uncountable graph G has countable coloring number if all induced subgraphs of G of cardinality \aleph_1 have countable coloring number.
 - (C) For every Boolean algebra B, if there are club many subalgebras of B of cardinality \aleph_1 which are openly generated then B itself is also openly generated.

Further reflections

- There are many open problems around the minimal cardinal numbers κ_A, κ_B, κ_C with the following properties:
 - (A') For every locally countably compact first countable topological space X, if all subspaces of X of cardinality $< \kappa_A$ are metrizable, then X itself is also metrizable.
 - (B') Any uncountable graph G has countable coloring chromatic number if all induced subgraphs of G of cardinality $< \kappa_B$ have countable coloring chromatic number.
 - (C') For every Boolean algebra *B*, if there are club many subalgebras of *B* of cardinality $< \kappa_C$ which are openly generated free then *B* itself is also openly generated free.

a consis(κ_A = ℵ₂) is still open and is known as Hamburger's problem.
 b κ_B > □_ω by a theorem of Erdös and Hajnal.
 c κ_C is possibly above a large cardinal (Saharon Shelah should already know much about it).

In a pre-Hilbert space a maximal orthonormal system need not to be an independent basis.

Gràcies per la seva atenció.

[1] Sakaé Fuchino, Pre-Hilbert spaces without orthonormal bases, submitted.

https://arxiv.org/pdf/1606.03869v2

Ramon LLull (1232-1315)

Coloring number of a graph

A graph E = ⟨E, K⟩ has coloring number ≤ κ ∈ Card if there is a well-ordering ⊑ on E s.t. for all p ∈ E the set

 $\{q \in E : q \sqsubseteq p \text{ and } q K p\}$

has cardinality $< \kappa$.

The coloring number col(E) of a graph E is the minimal cardinal among such κ as above.

Back

Notation: $\ell_2(S)$ and its standard unit vectors For an infinite set *S*, let

(1) $\ell_2(\mathbf{S}) = \{ \mathbf{u} \in {}^{\mathcal{S}}\mathcal{K} : \sum_{x \in \mathcal{S}} (\mathbf{u}(x))^2 < \infty \},$

where $\sum_{x \in S} (\mathbf{u}(x))^2$ is defined as $\sup\{\sum_{x \in A} (\mathbf{u}(x))^2 : A \in [S]^{<\aleph_0}\}$.

ℓ₂(S) is a/the Hilbert space of density |S| endowed with a natural structure of inner product space with coordinatewise addition and scalar multiplication, the zero element 0_{ℓ2(S)} with 0_{ℓ2(S)}(s) = 0 for all s ∈ S, as well as the inner product defined by

(2)
$$(\mathbf{u},\mathbf{v}) = \sum_{x\in S} \mathbf{u}(x) \overline{\mathbf{v}(x)}$$
 for $\mathbf{u}, \mathbf{v} \in \ell_2(S)$.

For x ∈ S, let e^S_x ∈ ℓ₂(S) be the standard unit vector at x defined by

(3)
$$e_x^S(y) = \delta_{x,y}$$
 for $y \in S$.

 $\triangleright \{ e_x^S : x \in S \}$ is an orthonormal basis of $\ell_2(S)$.

シック・ ビー・ イビッ・ イビッ・ (日)・ イロッ

Notation: Support of elements of $\ell_2(S)$ and direct sum of Hilbert spaces For $o \in \ell_2(S)$, the support of o is defined by

(1) $\operatorname{supp}(\mathfrak{o}) = \{x \in S : \mathfrak{o}(x) \neq 0\} \ (= \{x \in S : (\mathfrak{o}, \mathfrak{e}_x^S) \neq 0\}).$

- ▷ By the definition of $\ell_2(S)$, supp(0) is a countable subset of S for all $0 \in \ell_2(S)$.
- For any two pre-Hilbert spaces X, Y, the orthogonal direct sum of X and Y is the direct sum X ⊕ Y = {⟨x,y⟩ : x ∈ X, y ∈ Y} of X and Y as linear spaces together with the inner product defined by (⟨x₀,y₀⟩, ⟨x₁,y₁⟩) = (x₀,x₁) + (y₀,y₁) for x₀, x₁ ∈ X and y₀, y₁ ∈ Y.
- A sub-inner-product-space X₀ of a pre-Hilbert space X is an orthogonal direct summand of X if there is a sub-inner-product-space X₁ of X s.t. the mapping φ : X₀ ⊕ X₁ → X; (x₀, x₁) ↦ x₀ + x₁ is an isomorphism of pre-Hilbert spaces. If this holds, we usually identify X₀ ⊕ X₁ with X by φ as above.
 Back

Notation: $X \downarrow S$, $\overline{\oplus}_{i \in I} X_i$ etc.

▶ For $X \subseteq \ell_2(S)$ and $S' \subseteq S$, let $X \downarrow S' = \{ u \in X : supp(u) \subseteq S' \}$.

▶ For $u \in \ell_2(S)$, let $u \downarrow S' \in \ell_2(S)$ be defined by, for $x \in S$,

$$(u \downarrow S')(x) = \begin{cases} u(x) & \text{if } x \in S' \\ 0 & \text{otherwise.} \end{cases}$$

 \triangleright Note that $X \downarrow S'$ is not necessarily equal to $\{ u \downarrow S' : u \in X \}$

- A sub-inner-product-space X₀ of a pre-Hilbert space X is an orthogonal direct summand of X if there is a sub-inner-product-space X₁ of X s.t. the mapping φ : X₀ ⊕ X₁ → X; (x₀, x₁) ↦ x₀ + x₁ is an isomorphism of pre-Hilbert spaces. If this holds, we usually identify X₀ ⊕ X₁ with X by φ as above.
- ► For pairwise orthogonal linear spaces X_i , $i \in I$ of X, we denote with $\bigoplus_{i \in I}^X X_i$ the maximal linear subspace X' of X s.t. X' contains $\bigoplus_{i \in I} X_i$ as a dense subset of X'. Thus, we have $X = \bigoplus_{i \in I}^X X_i$ if $\bigoplus_{i \in I} X_i$ is dense in X. If it is clear in which X we are working we drop the superscript X and simply write $\bigoplus_{i \in I} X_i$.

Dimension of a pre-Hilbert space

- ▶ Let X be a pre-Hilbert space. By Bessel's inequality, all maximal orthonormal system of X have the same cardinality.
- \triangleright This cardinality is called the **dimension** of X and denoted by dim(X).
- ▶ dim $(X) \leq d(X)$.
- ► Note that, if dim(X) < d(X), then X cannot have any orthonormal basis.</p>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The proof of Proposition 4.

Proposition 4. (D. Buhagiara, E. Chetcutib and H. Weber 2008) For any pre-Hilbert space X, we have $d(X) \leq |X| \leq (\dim(X))^{\aleph_0}$.

Proof. Let X be a pre-Hilbert space with $d(X) = \lambda \le \kappa = \dim(X)$. Wlog we may assume that X is a dense subspace of $\ell_2(\lambda)$ and $\kappa \ge \aleph = 0$.

Let B = ⟨b_ξ : ξ < κ⟩ be a maximal orthonormal system in X and D = ∪{supp(b_ξ) : ξ < κ}. By the assumption we have |D| = κ.</p>

▶ For any distinct a_0 , $a_1 \in X$ we have $a_0 \upharpoonright D \neq a_1 \upharpoonright D$.

Then φ: ℓ₂(D) → X defined by φ(c) = { the unique c ∈ X s.t. c = c ↾ D; if there is such c ∈ X, 0; otherwise is well defined and surjective. Thus
d(X) ≤ |X| ≤ |ℓ₂(D)| = (dim(X))^{ℵ₀}.

(日)

$ADS^{-}(\kappa)$ and $ADS^{-}(\kappa)$ -sequence

For a regular cardinal κ, ADS⁻(κ) is the assertion that there is a stationary set E ⊆ E^ω_κ and a sequence ⟨A_α : α ∈ E⟩ s.t.

(1)
$$A_{\alpha} \subseteq \alpha$$
 and $ot(A_{\alpha}) = \omega$ for all $\alpha \in E$;

- (2) for any $\beta < \kappa$, there is a mapping $f : E \cap \beta \to \beta$ s.t. $f(\alpha) < \sup(A_{\alpha})$ for all $\alpha \in E \cap \beta$ and $A_{\alpha} \setminus f(\alpha)$, $\alpha \in E \cap \beta$ are pairwise disjoint.
- ▶ We shall call $\langle A_{\alpha} : \alpha \in E \rangle$ as above an ADS⁻(κ)-sequence.
- \triangleright Note that it follows from (1) and (2) that A_{α} , $\alpha \in E$ are pairwise almost disjoint.

Back

FRP

(FRP) For any regular $\kappa > \omega_1$, any stationary $S \subseteq E_{\kappa}^{\omega}$ and any mapping $g: S \to [\kappa]^{\aleph_0}$, there is $\alpha^* \in E_{\kappa}^{\omega_1}$ s.t. (*) α^* is closed w.r.t. g (that is, $g(\alpha) \subseteq \alpha^*$ for all $\alpha \in S \cap \alpha^*$) and, for any $I \in [\alpha^*]^{\aleph_1}$ closed w.r.t. g, closed in α^* w.r.t. the order topology and with $\sup(I) = \alpha^*$, if $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ is a filtration of I then $\sup(I_{\alpha}) \in S$ and $g(\sup(I_{\alpha})) \cap \sup(I_{\alpha}) \subseteq I_{\alpha}$ hold for stationarily many $\alpha < \omega_1$

Theorem 11a (S.F., H.Sakai and L.Soukup) TFAE over ZFC: (a) FRP; (b) ADS⁻(κ) does not hold for all regular uncountable $\kappa > \omega_1$.

Back