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Day 2 Overview

Yesterday we saw how certain σ-closed forcings have dense subsets
forming topological Ramsey spaces, and how ultrafilters forced by a
Ramsey space have complete combinatorics and simpler methods for
finding their Ramsey degrees.

The motivation for this is today’s tutorial:

1 Rudin-Keisler and Tukey orders on ultrafilters.

2 New Ramsey-classification Theorems finding canonical equivalence
relations on fronts and barriers.

3 Applications to find exact initial Rudin-Keisler and Tukey structures
on ultrafilters.
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Rudin-Keisler order on ultrafilters

V ≤RK U ⇔ there is a function h : ω → ω such that V = h(U),

where h(U) := {X ⊆ ω : h−1(X ) ∈ U}.
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Tukey order on ultrafilters

Let U ,V be ultrafilters.

Def. X ⊆ U is cofinal in (U ,⊇) iff for each U ∈ U , there is an X ∈ X
such that X ⊆ U; i.e. X is a filter base for U .

Def. V is Tukey reducible to U (V ≤T U) ⇔ there is a cofinal map
from U into V: ∃f : U → V mapping each base for U to a base for V.

Def. The Tukey type of U is the Tukey equivalence class of U .
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Guiding Questions in Tukey Theory of Ultrafilters

Fact. V ≤RK U implies V ≤T U , but not vice versa.

1 What is the structure of the Tukey types of ultrafilters?

2 How closely related are the Tukey and Rudin-Keisler orderings?

3 What is the structure of the RK classes inside a Tukey type?
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At the top

There is no maximal Rudin-Keisler type of an ultrafilter.

In constrast, Isbell showed that in ZFC there is always a Tukey maximal
ultrafilter.

Open Problem. Is there a model of ZFC in which every ultrafilter has the
maximal Tukey type?
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Structures in RK and Tukey types

There are two main types of results: embeddings of structures and exact
structures.

A recent result of Raghavan and Shelah shows that under
MA(σ-centered), the structure of the Boolean algebra P(ω)/fin embeds
into the Tukey types of p-points.

By initial Tukey structure we mean a ≤T -closed collection of Tukey
types of ultrafilters. These are exact structures rather than embeddings of
structures. Topological Ramsey spaces are useful for finding initial Tukey
structures, as we shall see today.
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Ramsey Ultrafilters are Tukey-minimal

Def. An ultrafilter U is Ramsey if for each c : [ω]2 → 2, there is a
U ∈ U such that c is monochromatic on [U]2.

Def. The Fubini product of U and V is

{X ⊆ ω × ω : {i ∈ ω : {j ∈ ω : (i , j) ∈ X} ∈ V} ∈ U}.

Thm. (Todorcevic in [Raghavan/Todorcevic 12]) If U is Ramsey, V is
non-principal, and V ≤T U , then V is isomorphic to a countable Fubini
iterate of U . Thus, Ramsey ultrafilters are Tukey minimal among the
nonprincipal ultrafilters. Furthermore, there are exactly ℵ1 RK-classes
in [U ]T .
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Initial Structures known so far

The following are the initial Tukey and Rudin-Keisler structures and
classification of the Rudin-Keisler types within the Tukey types obtained so
far.
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Thm. (D./Todorcevic) (CH, MA or in a forcing extension). For each
1 ≤ α < ω1, there is an ultrafilter Uα such that

1 The initial Tukey structure below Uα is exactly the linear order
(α + 1)∗.

2 The initial Rudin-Keisler structure below Uα is exactly the linear
order (α + 1)∗.

3 For each V ≤T Uα, the Tukey type of V consists precisely of the
isomorphism classes of iterated Fubini products of ultrafilters from
among a fixed countable collection of rapid p-points, which are
represented by the canonical equivalence relations. Thus, there are
exactly ℵ1 many RK-classes in [V]T , and we know its structure.
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Initial structures for hypercube ultrafilters

The topological Ramsey space H2 is dense in the n-square forcing in
[Blass 73]. The hypercube space Hk uses blocks consisting of
k-dimensional hypercubes.

Thm. (D./Mijares/Trujillo) For each k ≥ 2, there is a topological
Ramsey space Hk which forces an ultrafilter Uk such that

1 The initial Tukey structure below Uk is the Boolean algebra P(k).

2 The initial Rudin-Keisler structure below Uk is also P(k).

3 If V ≤T Uk , then the Tukey type [V]T consists of all isomorphism
types of Fubini iterates of certain p-points represented by
canonical projection maps.
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Initial Tukey and Rudin-Keisler structures differing

Let K0, . . . ,Kn be any collection of Fräıssé classes of finite relational
structures with the Ramsey property (and the OPFAP).

Thm. (D./Mijares/Trujillo) (CH, MA or by forcing) There is a p-point
U such that

1 The initial Tukey structure below U is exactly P(n + 1).

2 The set of isomorphism types of the product K0 × · · · × Kn,
partially ordered by embedding, is realized as the initial RK
structure below U .

3 If V ≤T U , then the Tukey type [V]T consists of all RK types of
Fubini iterates of p-points essentially coded by members of
K0 × · · · × Kn.
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Initial Tukey and RK structures of non-p-points

Extending the construction of Fin⊗ Fin recursively to Fin⊗k , we obtain the
forcings P(ωk)/Fin⊗k .

Thm. (D.) there is an ultrafilter (non-p-point) Wk forced by
P(ωk)/Fin⊗k such that

1 The initial Tukey structure below Wk is exactly a chain of length
k .

2 The initial RK structure below Wk is exactly a chain of length k.
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Initial Tukey and RK structures of size c for non-p-points

Extending the recursive construction of Fin⊗k to FinB , for B a uniform
barrier on ω, let WB denote the ultrafilter forced by P(B)/FinB .

Thm. (D.) WB is not a p-point and

1 The initial RK structure below GB is a linear order of size c which
is isomorphic to a certain non-standard model of ω.

2 The initial Tukey structure below GB contains a copy of the initial
Rudin-Keisler structure below GB , but also contains more.
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Now we give an idea of how these results were obtained.
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Todorcevic: A Ramsey ultrafilter is Tukey minimal

The proof proceeds by letting V ≤T U , a Ramsey ultrafilter, and

1 Turning a cofinal map from U to V into a RK-map on a front
using ‘Continuous Cofinal Maps Theorem’ in [D./Todorcevic 11],

2 Analysing the induced RK map in terms of canonical equivalence
relations using Pudlák-Rödl Canonization Theorem.

This proof outline can be extended to topological Ramsey spaces.
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Exact Tukey and RK Structures: General Proof Outline

Let R be a topological Ramsey space, U be the filter forced by (R,≤∗),
and suppose V ≤T U . Let f : U → V be a monotone cofinal map. Wlog
assume V is an ultrafilter on base set ω.

(1) Prove f is continuous in the metric topology on R when restricted
below some member of U .

(2) Then f is approximated by a finitary map f̂ : AR → [ω]<ω.

(3) Let F be the front {a ∈ AR minimal such that f̂ (a) 6= ∅}.

(4) Define g : F → ω by g(a) = min f̂ (a), for a ∈ F .

(5) Given X ∈ U , define

F|X = {a ∈ F : ∃k < ω (a ≤fin rk(X ))}.
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Exact Tukey and RK Structures: General Proof Outline

(6) Define an U � F to be the filter on base set F generated by the set of
all F|X , X ∈ U . Prove U � F is an ultrafilter.

(7) Prove that g(U � F) = V. Thus, the ultrafilter U � F is RK
equivalent to V.

(8) Prove a Ramsey-classification Theorem for equivalence relations on
fronts.

(9) Apply this to the function g on F , since g : F → ω induces an
equivalence relation on F .

(10) Decode g(F � U). Often, but not always, this is isomorphic to a
Fubini iterate of p-points which are determined by the products of
substructures on the blocks.

A general proof of (1) - (7) for a large class of spaces is given in [DMT].
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The remainder of this day’s tutorial concentrates on canonical equivalence
relations on fronts and some specific examples.

We begin at the beginning.
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Erdős-Rado Theorem

Extending Ramsey’s Theorem to colorings with infinitely many colors
amounts to extending it to equivalence relations.

An equivalence relation E on [ω]k is canonical iff there is some I ⊆ k such
that E = EI , where for a = {a0, . . . , ak−1}, b = {b0, . . . , bk−1} ∈ [ω]k ,

a EI b iff ∀i ∈ I , ai = bi .

Erdős-Rado Canonization Theorem. For each k ≥ 1 and each
equivalence relation E on [ω]k , there is an infinite M ⊆ ω such that
E � [M]k is canonical.

Remark. EI can be thought of as a projection map πI , where
πI (a) = {ai : i ∈ I}. Then a EI b iff πI (a) = πI (b).
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Exercise. The Erdős-Rado Theorem implies Ramsey’s Theorem.
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Fronts and Barriers on [ω]ω

Def. F ⊆ [ω]<ω is a front on [ω]ω iff

(i) ∀X ∈ [ω]ω, ∃a ∈ F such that a < X ; and

(ii) F is Nash-Williams: For a, b ∈ F , a 6< b.

B ⊆ [ω]<ω is a barrier if (i) holds and also

(ii’) B is Schreier: For a 6= b ∈ B, a 6⊆ b.

Galvin’s Lemma. Any front is a barrier when restricted to some small
enough infinite subset of ω.
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Uniform fronts of rank α < ω1

[ω]k is the uniform front of rank k .

The Schreier barrier

S = {a ∈ [ω]<ω : |a| = min(a) + 1}

is a uniform front of rank ω.

Uniform fronts of higher rank are made recursively from those of lower
rank.
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Extension of Erdős-Rado Theorem to all fronts

Def. For a front F and M ∈ [ω]ω, F|M = {a ∈ F : a ⊆ M}.

Def. For a front F , a map ϕ : F → [N]<ω is irreducible if ϕ is

(a) inner, i.e. ϕ(a) ⊆ a for all a ∈ F , and

(b) Nash-Williams, i.e. for each a, b ∈ F , ϕ(a) 6< ϕ(b).

Pudlak-Rödl Canonization Thm. For every front (barrier) F on ω and
every equivalence relation E on F , there is an infinite M ⊆ ω such that
E � (F|M) is represented by an irreducible map defined on F|M.

Exercise. For a uniform barrier of finite rank, the Pudlák-Rödl
Theorem gives back the Erdős-Rado Theorem.
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Fronts on (R,≤, r)

Like the Ellentuck space, abstract topological Ramsey spaces have a
notion of front.

Def. F ⊆ AR is a front on R iff

(i) ∀X ∈ R, ∃a ∈ F such that a < X ; and

(ii) F is Nash-Williams: For a, b ∈ F , a 6< b.

The finite rank fronts are of the form ARk for some k < ω.
Recursively, one can extend the definition to infinite rank fronts.

A similar theorem to Galvin’s Lemma allows us to interchange fronts
and barriers in general topological Ramsey spaces, so we use fronts
since they are simpler.
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Now we focus on canonical equivalence relations for new topological
Ramsey spaces.
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Canonical Equivalence Relations for Products of Fräıssé
Classes

The Erdős-Rado Theorem can be extended to products from large class of
Fräıssé classes of ordered relational structures with the Ramsey property,
as long as they have the Order-Preserving Free Amalgamation Property.

Thm. (D. in [DMT]) For finite products of Fräıssé classes of ordered
relational structures with the Ramsey property and the OPFAP,
canonical equivalence relations are given by canonical projection maps
regarding only indices, exactly as for the Erdős-Rado Theorem.

By work of Nešetřil and Rödl (77 and 83), the Fräıssé classes of finite
graphs, finite graphs omitting k-cliques, and other classes satisfy the
conditions of the previous theorem.
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We now go through how canonical projection maps decode the RK types
of all ultrafilters Tukey reducible to the generic ultrafilter forced by the
Ramsey space where blocks are from K3, the finite triangle-free graphs.

Board work.
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We now turn an interesting class of non-p-points.
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The forcing P(ω × ω)/Fin⊗2

Recall that P(ω)/Fin forces a Ramsey ultrafilter.

Fin⊗ Fin = {X ⊆ ω × ω : ∀∞i ∈ ω {j ∈ ω : (i , j) ∈ X} is finite}.

Let G2 denote the generic ultrafilter forced by P(ω × ω)/Fin⊗2.

Thm. (Blass/D./Raghavan) G2 is not a p-point, is a weak p-point,
satisfies U → (U)2k,4, has exactly one RK-predecessor π0(G2), is not
Tukey maximum, and is Tukey strictly above its projected Ramsey
ultrafilter π0(G2).

This left open what exactly is the initial Tukey structure below G2.
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ultrafilter π0(G2).

This left open what exactly is the initial Tukey structure below G2.
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2-Dimensional Ellentuck Space dense in (Fin× Fin)+

∅

{12}

{12, 13}

{7}

{7, 11}{7, 8}

{3}

{3, 10}{3, 6}{3, 4}

{0}

{0, 9}{0, 5}{0, 2}{0, 1}

Figure: W2 ⊆ [ω]2; o.t.(W2) = ω2

X ∈ E2 iff X ⊆W2 tree-isomorphic to W2 (so o.t.(X ) = ω2)
and respects the order of the labels on the nodes.

Y ≤ X iff Y ⊆ X .

E2 is a dense subset of (Fin× Fin)+.
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slide 85 and 86

1 2 5 9 14 20 4 6 10 15 26 8 11 16 22 13 17 23 19 24 26

0 3 7 12 18 25

∅

Z 6∈ E2

Figure: Two members X and Y of E2 with Y ≤ X , and a Z 6∈ E∈.

Dobrinen Ramsey theory in forcing University of Denver 32 / 45



slide 85 and 86

1 2 5 9 14 20 4 6 10 15 26 8 11 16 22 13 17 23 19 24 26

0 3 7 12 18 25

∅

Z 6∈ E2

Figure: Two members X and Y of E2 with Y ≤ X , and a Z 6∈ E∈.

Dobrinen Ramsey theory in forcing University of Denver 32 / 45



slide 85 and 86

1 2 5 9 14 20 4 6 10 15 26 8 11 16 22 13 17 23 19 24 26

0 3 7 12 18 25

∅

Z 6∈ E2

Figure: Two members X and Y of E2 with Y ≤ X , and a Z 6∈ E∈.

Dobrinen Ramsey theory in forcing University of Denver 32 / 45



The 2-dimensional Ellentuck spaces

Thm. (D.) E2 is a topological Ramsey space, and (E2,≤∗) is forcing
equivalent to P(ω2)/Fin⊗2.

The Tukey and RK structures below G2 are obtained using the
canonical projection maps, similarly as in A3.

The initial Tukey structure below G2 consists only of G2 and the
projected Ramsey ultrafilter below it.

Likewise the initial RK structure below G2 is also a chain of length 2.
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E3, dense in P(ω3)/Fin⊗3

∅

(3)

(3, 3)

(3
,3
,3
)

(2)

(2, 3)

(2
,3
,3
)

(2, 2)

(2
,2
,3
)

(2
,2
,2
)

(1)

(1, 3)

(1
,3
,3
)

(1, 2)

(1
,2
,3
)

(1
,2
,2
)

(1, 1)

(1
,1
,3
)

(1
,1
,2
)

(1
,1
,1
)

(0)

(0, 3)

(0
,3
,3
)

(0, 2)

(0
,2
,3
)

(0
,2
,2
)

(0, 1)

(0
,1
,3
)

(0
,1
,2
)

(0
,1
,1
)

(0, 0)

(0
,0
,3
)

(0
,0
,2
)

(0
,0
,1
)

(0
,0
,0
)

Figure: ω 6 ↓≤3

∅ ≺ (0) ≺ (0, 0) ≺ (0, 0, 0) ≺ (0, 0, 1) ≺ (0, 1) ≺ (0, 1, 1) ≺ (1) ≺ (1, 1) ≺

∅

{31}

{31, 32}

{3
1,
32
,3
3}

{16}

{16, 29}

{1
6,
29
,3
0}

{16, 17}

{1
6,
17
,2
8}

{1
6,
17
,1
8}

{6}

{6, 26}

{6
,2
6,
27
}

{6, 14}

{6
,1
4,
25
}

{6
,1
4,
15
}

{6, 7}

{6
,7
,2
4}

{6
,7
,1
3}

{6
,7
,8
}

{0}

{0, 22}

{0
,2
2,
23
}

{0, 11}

{0
,1
1,
21
}

{0
,1
1,
12
}

{0, 4}

{0
,4
,2
0}

{0
,4
,1
0}

{0
,4
,5
}

{0, 1}

{0
,1
,1
9}

{0
,1
,9
}

{0
,1
,3
}

{0
,1
,2
}

Figure: The maximum member of E3, W3 ⊆ [ω]3
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()

(1)

(1, 1)

(1
,1
,1
)

(0)

(0, 2)

(0
,2
,2
)

(0, 1)

(0
,1
,2
)

(0
,1
,1
)

(0, 0)

(0
,0
,2
)

(0
,0
,1
)

(0
,0
,0
)

∅

{31}

{31, 32}

{3
1,
32
,3
3}

{0}

{0, 36}

{0
,3
6,
37
}

{0, 11}

{0
,1
1,
35
}

{0
,1
1,
21
}

{0, 1}

{0
,1
,3
4}

{0
,1
,9
}

{0
,1
,2
}

Figure: r7(Y ), a typical finite approximation to a member of E3
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The first infinite dimensional Ellentuck space

Let S denote the Schreier barrier {a ∈ [ω]<ω : |a| = min(a) + 1}.

X ⊆ S is in FinS iff for all but finitely many i , Xi ∈ Fin⊗i .

Xi = {a ∈ X : min(a) = i}

FinS is a σ-ideal on S.

P(S)/FinS forces an ultrafilter GS on base set S.
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We use the form of S to make our template structure of finite
non-decreasing sequences of natural numbers.

∅

(3)

(3, 4)

(3, 4, 4)

(3
,4
,4
,4
)

(3, 3)

(3, 3, 4)

(3
,3
,4
,4
)

(3, 3, 3)

(3
,3
,3
,4
)

(3
,3
,3
,3
)

(2)

(2, 4)

(2
,4
,4
)

(2, 3)

(2
,3
,4
)

(2
,3
,3
)

(2, 2)

(2
,2
,4
)

(2
,2
,3
)

(2
,2
,2
)

(1)

(1, 4)(1, 3)(1, 2)(1, 1)

(0)

Figure: ω 6 ↓S

() ≺ (0) ≺ (1) ≺ (1, 1) ≺ (1, 2) ≺ (2) ≺ (2, 2) ≺ (2, 2, 2) ≺ (1, 3) ≺
(2, 2, 3) ≺ (2, 3) ≺ (2, 3, 3) ≺ (3) ≺ (3, 3) ≺ (3, 3, 3) ≺ (3, 3, 3, 3) ≺
(1, 4) ≺ . . .
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∅

11

23

24

25

12

21

22

13

2014

4

18

19

9

1710

5

1686

1

15732

0

Figure: WS
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∅

{11}

{11, 23}

{11, 23, 24}

{1
1,
23
,2
4,
25
}

{11, 12}

{11, 12, 21}

{1
1,
12
,2
1,
22
}

{11, 12, 13}

{1
1,
12
,1
3,
20
}

{1
1,
12
,1
3,
14
}

{4}

{4, 18}

{4
,1
8,
19
}

{4, 9}

{4
,9
,1
7}

{4
,9
,1
0}

{4, 5}

{4
,5
,1
6}

{4
,5
,8
}

{4
,5
,6
}

{1}

{1, 15}{1, 7}{1, 3}{1, 2}

{0}

Figure: WS
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This construction can continue over all uniform barriers B of countable
rank to obtain a topological Ramsey space EB dense in the forcing
P(B)/FinB.

These spaces include P(ωα)/Fin⊗α for all α < ω1.
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Ramsey degrees for ultrafilters forced by P(ωk)/Fin⊗k

The Ramsey space structure of the high-dimensional Ellentuck spaces
make it possible, with work, to find the Ramsey degrees for their forced
ultrafilters.

Thm. (Navarro Flores) Let r(Ek , 2) denote the number r such that

Gk → (Gk)2k,r .

1 r(E3, 2) = 14.

2 r(E4, 2) = 49.

3 r(E5, 2) = 175.

4 r(E6, 2) = 642.

5 r(E7, 2) = 2378.

Moreover, there is a recursive formula for finding r(Ek , 2) for any k < ω.
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On Thursday, we will look at the Halpern-Läuchli Theorem, topological
Ramsey spaces of strong trees, and applications to universal relational
structures.
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Baumgartner/Taylor, Partition Theorems and Ultrafilters, TAMS (1978).

Blass, The Rudin-Keisler ordering of P-points, TAMS (1973).

Blass/Dobrinen/Raghavan, The next best thing to a P-point, JSL (2015).

Dobrinen, High dimensional Ellentuck spaces and initial chains in the
Tukey structure of non-p-points, JSL (2016).

Dobrinen, Infinite dimensional Ellentuck spaces and Ramsey-classification
theorems, JML (2016).

Dobrinen/Mijares/Trujillo,Topological Ramsey spaces from Fräıssé classes
and initial Tukey structures, AFML (to appear).
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Isbell, The catigory of cofinal types. II, TAMS (1956).

Nash-Williams, On well-quasi-ordering transfinite sequences, Proc.
Cambridge Phil. Soc. (1965).

Navarro Flores, Masters Thesis, Ramsey numbers for ultrafilters associated
to topological Ramsey spaces (2015).

Dobrinen Ramsey theory in forcing University of Denver 44 / 45



References for Day 2
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