On some downwards transfer properties on Foreman-Laver model

André Ottenbreit Maschio Rodrigues a joint work with Sakaé Fuchino and Hiroshi Sakai

Kobe University

November 29, 2016

11/29/2016

1/23

O. M. Rodriges, André (Kobe University)On some downwards transfer properties c

- Magidor modified the construction to lessen the hypothesis on κ from huge to almost huge.
- Magidor, Foreman and Shelah actually proved that MM implies the existence of an ℵ₂-saturated ℵ₁-ideal.
- The above model by Kunen satisfies Chang's conjecture.
- By modifying Kunen's construction, Foreman and Laver constructed a model with some nice transfer properties from ℵ₂ to ℵ₁.

- Magidor modified the construction to lessen the hypothesis on κ from huge to almost huge.
- Magidor, Foreman and Shelah actually proved that MM implies the existence of an ℵ₂-saturated ℵ₁-ideal.
- The above model by Kunen satisfies Chang's conjecture.
- By modifying Kunen's construction, Foreman and Laver constructed a model with some nice transfer properties from ℵ₂ to ℵ₁.

- Magidor modified the construction to lessen the hypothesis on κ from huge to almost huge.
- Magidor, Foreman and Shelah actually proved that MM implies the existence of an \aleph_2 -saturated \aleph_1 -ideal.
- The above model by Kunen satisfies Chang's conjecture.
- By modifying Kunen's construction, Foreman and Laver constructed a model with some nice transfer properties from ℵ₂ to ℵ₁.

- Magidor modified the construction to lessen the hypothesis on κ from huge to almost huge.
- Magidor, Foreman and Shelah actually proved that MM implies the existence of an \aleph_2 -saturated \aleph_1 -ideal.
- The above model by Kunen satisfies Chang's conjecture.
- By modifying Kunen's construction, Foreman and Laver constructed a model with some nice transfer properties from ℵ₂ to ℵ₁.

- Magidor modified the construction to lessen the hypothesis on κ from huge to almost huge.
- Magidor, Foreman and Shelah actually proved that MM implies the existence of an \aleph_2 -saturated \aleph_1 -ideal.
- The above model by Kunen satisfies Chang's conjecture.
- By modifying Kunen's construction, Foreman and Laver constructed a model with some nice transfer properties from ℵ₂ to ℵ₁.

Recall:

Definition (Chromatic number)

Given a graph $\mathcal{G} = \langle V, E \rangle$, a function $f : V \longrightarrow \kappa$ is called a κ -coloring of \mathcal{G} if no adjacent vertex have the same value by f. The chromatic number of \mathcal{G} (Chr(\mathcal{G})) is the smallest cardinal κ for which there exists a κ -coloring.

We denote:

Definition (Transfer of the chromatic number)

Given cardinals $\gamma < \delta$, we denote by $Tr_{Chr}(\delta, \gamma)$ the statement: " Every graph of size and chromatic number δ has a subgraph of

and chromatic number $\gamma."$

Recall:

Definition (Chromatic number)

Given a graph $\mathcal{G} = \langle V, E \rangle$, a function $f : V \longrightarrow \kappa$ is called a κ -coloring of \mathcal{G} if no adjacent vertex have the same value by f. The chromatic number of \mathcal{G} (Chr(\mathcal{G})) is the smallest cardinal κ for which there exists a κ -coloring.

We denote:

Definition (Transfer of the chromatic number)

Given cardinals $\gamma < \delta$, we denote by $Tr_{Chr}(\delta, \gamma)$ the statement: "Every graph of size and chromatic number δ has a subgraph of size and chromatic number γ ."

Theorem (Foreman-Laver)

Assume there exists a huge cardinal κ with target λ . Then there exists W a forcing extension of V such that $\kappa = (\aleph^1)^W$, $\lambda = (\aleph_2)^W$ and which satisfies $\operatorname{Tr}_{Chr}(\aleph_2, \aleph_1)$.

Notice that the failure of the same transfer property is consistent:

Theorem (Baumgartner)

Assume CH. Then, there exists a countably closed \aleph_2 -c.c. poset \mathbb{B} of size \aleph_2 which forces $\neg Tr_{Chr}(\aleph_2, \aleph_1)$.

Theorem (Foreman-Laver)

Assume there exists a huge cardinal κ with target λ . Then there exists W a forcing extension of V such that $\kappa = (\aleph^1)^W$, $\lambda = (\aleph_2)^W$ and which satisfies $\operatorname{Tr}_{\operatorname{Chr}}(\aleph_2, \aleph_1)$.

Notice that the failure of the same transfer property is consistent:

Theorem (Baumgartner)

Assume CH. Then, there exists a countably closed \aleph_2 -c.c. poset \mathbb{B} of size \aleph_2 which forces $\neg Tr_{Chr}(\aleph_2, \aleph_1)$.

11/29/2016

- Suppose κ is a huge cardinal. Let $j : V \longrightarrow M$ be an elementary embedding with crit $(j)=\kappa$, $\lambda := j(\kappa)$ and $M^{\lambda} \subset M$.
- the construction consists in building a two step iteration ℙ * ℝ, and V^{ℙ*Ř} will be the desired model.
- \mathbb{P} collapses κ to \aleph_1 , while \mathbb{R} collapses λ to \aleph_2 .
- \mathbb{P} is κ -c.c., while \mathbb{R} is λ -c.c and $< \kappa$ -closed.

- Suppose κ is a huge cardinal. Let $j : V \longrightarrow M$ be an elementary embedding with crit $(j)=\kappa$, $\lambda := j(\kappa)$ and $M^{\lambda} \subset M$.
- the construction consists in building a two step iteration ℙ * ℝ, and V^ℙ*ℝ will be the desired model.
- \mathbb{P} collapses κ to \aleph_1 , while \mathbb{R} collapses λ to \aleph_2 .
- \mathbb{P} is κ -c.c., while \mathbb{R} is λ -c.c and $< \kappa$ -closed.

- Suppose κ is a huge cardinal. Let $j : V \longrightarrow M$ be an elementary embedding with crit $(j) = \kappa$, $\lambda := j(\kappa)$ and $M^{\lambda} \subset M$.
- the construction consists in building a two step iteration ℙ * ℝ, and V^ℙ*ℝ will be the desired model.
- \mathbb{P} collapses κ to \aleph_1 , while \mathbb{R} collapses λ to \aleph_2 .
- \mathbb{P} is κ -c.c., while \mathbb{R} is λ -c.c and $< \kappa$ -closed.

- Suppose κ is a huge cardinal. Let $j : V \longrightarrow M$ be an elementary embedding with crit $(j) = \kappa$, $\lambda := j(\kappa)$ and $M^{\lambda} \subset M$.
- the construction consists in building a two step iteration ℙ * ℝ, and V^ℙ*ℝ will be the desired model.
- \mathbb{P} collapses κ to \aleph_1 , while \mathbb{R} collapses λ to \aleph_2 .
- \mathbb{P} is κ -c.c., while \mathbb{R} is λ -c.c and $< \kappa$ -closed.

• We fix G * H a $\mathbb{P} * \dot{\mathbb{R}}$ generic over V.

- We can find G
 \$\$\hat{G}\$ * \$\hat{H}\$ a \$j(\$\mathbb{P}\$) * \$j(\$\mathbb{R}\$) generic over \$V\$ such that

 \$\$V → \$M\$ can be extended to an elementary embedding
 \$\$J: \$V[\$G * \$H\$] → \$M[\$\hat{G}\$ * \$\hat{H}\$]\$.
- \widehat{G} is chosen so that $V[G * H] \subset V[\widehat{G}]$.
- V[G] is a generic extension of V[G * H] by a κ-centred forcing poset (union of κ-many centred sets of conditions).
- $V[\widehat{G} * \widehat{H}]$ is a $< \lambda$ -closed generic extension of $V[\widehat{G}]$.

- We fix G * H a $\mathbb{P} * \dot{\mathbb{R}}$ generic over V.
- We can find $\widehat{G} * \widehat{H}$ a $j(\mathbb{P}) * j(\mathbb{R})$ generic over V such that $j: V \longrightarrow M$ can be extended to an elementary embedding $J: V[G * H] \longrightarrow M[\widehat{G} * \widehat{H}].$
- \widehat{G} is chosen so that $V[G * H] \subset V[\widehat{G}]$.
- V[G] is a generic extension of V[G * H] by a κ-centred forcing poset (union of κ-many centred sets of conditions).
- $V[\widehat{G} * \widehat{H}]$ is a $< \lambda$ -closed generic extension of $V[\widehat{G}]$.

- We fix G * H a $\mathbb{P} * \dot{\mathbb{R}}$ generic over V.
- We can find $\widehat{G} * \widehat{H}$ a $j(\mathbb{P}) * j(\mathbb{R})$ generic over V such that $j: V \longrightarrow M$ can be extended to an elementary embedding $J: V[G * H] \longrightarrow M[\widehat{G} * \widehat{H}].$
- \widehat{G} is chosen so that $V[G * H] \subset V[\widehat{G}]$.
- V[G] is a generic extension of V[G * H] by a κ-centred forcing poset (union of κ-many centred sets of conditions).
- $V[\widehat{G} * \widehat{H}]$ is a $< \lambda$ -closed generic extension of $V[\widehat{G}]$.

- We fix G * H a $\mathbb{P} * \dot{\mathbb{R}}$ generic over V.
- We can find $\widehat{G} * \widehat{H}$ a $j(\mathbb{P}) * j(\mathbb{R})$ generic over V such that $j: V \longrightarrow M$ can be extended to an elementary embedding $J: V[G * H] \longrightarrow M[\widehat{G} * \widehat{H}].$
- \widehat{G} is chosen so that $V[G * H] \subset V[\widehat{G}]$.
- V[G] is a generic extension of V[G * H] by a κ-centred forcing poset (union of κ-many centred sets of conditions).
- $V[\widehat{G} * \widehat{H}]$ is a $< \lambda$ -closed generic extension of $V[\widehat{G}]$.

- We fix G * H a $\mathbb{P} * \dot{\mathbb{R}}$ generic over V.
- We can find $\widehat{G} * \widehat{H}$ a $j(\mathbb{P}) * j(\mathbb{R})$ generic over V such that $j: V \longrightarrow M$ can be extended to an elementary embedding $J: V[G * H] \longrightarrow M[\widehat{G} * \widehat{H}].$
- \widehat{G} is chosen so that $V[G * H] \subset V[\widehat{G}]$.
- V[G] is a generic extension of V[G * H] by a κ-centred forcing poset (union of κ-many centred sets of conditions).
- $V[\widehat{G} * \widehat{H}]$ is a $< \lambda$ -closed generic extension of $V[\widehat{G}]$.

We show that $V[G * H] \models "\operatorname{Tr}_{\operatorname{Chr}}(\aleph_2, \aleph_1)$ ".

- In V[G * H], let $\mathcal{G} = \langle \lambda, E \rangle$ be a graph of chromatic number $\lambda = \aleph_2$.
- We want to show that

$$V[G * H] \models ``\exists \mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = \aleph_1 = \kappa ``$$

• By elementarity, it is enough to show that :

 $M[\widehat{G} * \widehat{H}] \models \text{``} \exists \mathcal{G}' < J(\mathcal{G}), |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = J(\kappa) = \lambda = \aleph_1 \text{''}$

We show that $V[G * H] \models$ "Tr_{Chr}(\aleph_2, \aleph_1)".

- In V[G * H], let $\mathcal{G} = \langle \lambda, E \rangle$ be a graph of chromatic number $\lambda = \aleph_2$.
- We want to show that

$$V[G * H] \models ``\exists \mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = \aleph_1 = \kappa ``$$

• By elementarity, it is enough to show that :

 $M[\widehat{G} * \widehat{H}] \models \text{``} \exists \mathcal{G}' < J(\mathcal{G}), |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = J(\kappa) = \lambda = \aleph_1 \text{''}$

We show that $V[G * H] \models "\operatorname{Tr}_{\operatorname{Chr}}(\aleph_2, \aleph_1)$ ".

- In V[G * H], let $\mathcal{G} = \langle \lambda, E \rangle$ be a graph of chromatic number $\lambda = \aleph_2$.
- We want to show that

$$V[G * H] \models "\exists \mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = \aleph_1 = \kappa"$$

• By elementarity, it is enough to show that :

 $M[\widehat{G} * \widehat{H}] \models \text{``} \exists \mathcal{G}' < J(\mathcal{G}), |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = J(\kappa) = \lambda = \aleph_1 \text{''}$

We show that $V[G * H] \models "\operatorname{Tr}_{\operatorname{Chr}}(\aleph_2, \aleph_1)$ ".

- In V[G * H], let $\mathcal{G} = \langle \lambda, E \rangle$ be a graph of chromatic number $\lambda = \aleph_2$.
- We want to show that

$$V[G * H] \models ``\exists \mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = \aleph_1 = \kappa ``$$

• By elementarity, it is enough to show that :

$$M[\widehat{G} * \widehat{H}] \models ``\exists \mathcal{G}' < J(\mathcal{G}), |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = J(\kappa) = \lambda = \aleph_1 ``$$

We show that $V[G * H] \models$ "Tr_{Chr}(\aleph_2, \aleph_1)".

- In V[G * H], let $\mathcal{G} = \langle \lambda, E \rangle$ be a graph of chromatic number $\lambda = \aleph_2$.
- We want to show that

$$V[G * H] \models ``\exists \mathcal{G}' \subseteq \mathcal{G}, |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = \aleph_1 = \kappa ``$$

• By elementarity, it is enough to show that :

$$M[\widehat{G} * \widehat{H}] \models ``\exists \mathcal{G}' < J(\mathcal{G}), |\mathcal{G}'| = \mathsf{Chr}(\mathcal{G}') = J(\kappa) = \lambda = \aleph_1 ``$$

- Suppose, towards a contradiction, that $J''\mathcal{G}$ has chromatic number \aleph_0 in $M[\widehat{G} * \widehat{H}]$.
- Since $J''\mathcal{G} \approx \mathcal{G}$ in $V[\widehat{G} * \widehat{H}]$, we have that \mathcal{G} has countable chromatic number in $V[\widehat{G} * \widehat{H}]$.
- The forcing poset to get from $V[\widehat{G}]$ to $V[\widehat{G} * \widehat{H}]$ is $< \lambda$ close, so we can apply the following lemma:

Lemma (< λ -closed transfer)

- Suppose, towards a contradiction, that $J''\mathcal{G}$ has chromatic number \aleph_0 in $M[\widehat{G} * \widehat{H}]$.
- Since $J''\mathcal{G} \approx \mathcal{G}$ in $V[\widehat{G} * \widehat{H}]$, we have that \mathcal{G} has countable chromatic number in $V[\widehat{G} * \widehat{H}]$.
- The forcing poset to get from V[G] to V[G * H] is < λ close, so we can apply the following lemma:

Lemma ($<\lambda$ -closed transfer)

- Suppose, towards a contradiction, that $J''\mathcal{G}$ has chromatic number \aleph_0 in $M[\widehat{G} * \widehat{H}]$.
- Since $J''\mathcal{G} \approx \mathcal{G}$ in $V[\widehat{G} * \widehat{H}]$, we have that \mathcal{G} has countable chromatic number in $V[\widehat{G} * \widehat{H}]$.
- The forcing poset to get from V[G] to V[G * H] is < λ close, so we can apply the following lemma:

Lemma (< λ -closed transfer)

- Suppose, towards a contradiction, that $J''\mathcal{G}$ has chromatic number \aleph_0 in $M[\widehat{G} * \widehat{H}]$.
- Since $J''\mathcal{G} \approx \mathcal{G}$ in $V[\widehat{G} * \widehat{H}]$, we have that \mathcal{G} has countable chromatic number in $V[\widehat{G} * \widehat{H}]$.
- The forcing poset to get from V[G] to V[G * H] is < λ close, so we can apply the following lemma:

Lemma ($< \lambda$ -closed transfer)

We also have that $V[\widehat{G}]$ is a κ -centred generic extension of V[G * H], so we can apply the next lemma:

Lemma (κ -centred transfer)

Let C a κ -centered poset. Suppose that C forces a graph \mathcal{G} , $|\mathcal{G}| > \kappa$, to have countable chromatic number. Then the chromatic number of \mathcal{G} is $\leq \kappa$.

We just proved that in V[G * H], we have $Chr(\mathcal{G}) \leq \kappa$. But this contradicts the assumption

$$V[G * H] \models \text{``Chr}(\mathcal{G}) = \aleph_2 = \lambda > \kappa \text{''}$$

We also have that $V[\widehat{G}]$ is a κ -centred generic extension of V[G * H], so we can apply the next lemma:

Lemma (κ -centred transfer)

Let C a κ -centered poset. Suppose that C forces a graph \mathcal{G} , $|\mathcal{G}| > \kappa$, to have countable chromatic number. Then the chromatic number of \mathcal{G} is $\leq \kappa$.

We just proved that in V[G * H], we have $Chr(G) \leq \kappa$. But this contradicts the assumption

$$V[G * H] \models$$
" $Chr(\mathcal{G}) = \aleph_2 = \lambda > \kappa$ "

11/29/2016

We also have that $V[\widehat{G}]$ is a κ -centred generic extension of V[G * H], so we can apply the next lemma:

Lemma (κ -centred transfer)

Let C a κ -centered poset. Suppose that C forces a graph \mathcal{G} , $|\mathcal{G}| > \kappa$, to have countable chromatic number. Then the chromatic number of \mathcal{G} is $\leq \kappa$.

We just proved that in V[G * H], we have $Chr(\mathcal{G}) \leq \kappa$. But this contradicts the assumption

$$V[G * H] \models$$
 " $Chr(\mathcal{G}) = \aleph_2 = \lambda > \kappa$ "

11/29/2016

- On the same Foreman-Laver model, Tall applied the same technique to obtain some results about some topological properties.
- Instead of transferring down properties from ℵ₂ to ℵ₁, his results go the opposite way, transferring properties from ℵ₁ to ℵ₂, or higher.
- For his results, we need some definitions:

- On the same Foreman-Laver model, Tall applied the same technique to obtain some results about some topological properties.
- Instead of transferring down properties from ℵ₂ to ℵ₁, his results go the opposite way, transferring properties from ℵ₁ to ℵ₂, or higher.

11/29/2016

10 / 23

• For his results, we need some definitions:

- On the same Foreman-Laver model, Tall applied the same technique to obtain some results about some topological properties.
- Instead of transferring down properties from \aleph_2 to \aleph_1 , his results go the opposite way, transferring properties from \aleph_1 to \aleph_2 , or higher.
- For his results, we need some definitions:

- A collection *Y* of subsets of a topological space is **discrete** if each point in the space has a neighbourhood which meets at most one member of the collection.
- A discrete collection 𝒱 is separated if there exist pairwise disjoint open sets U_Y for each Y ∈ 𝒱 such that Y ⊆ U_Y.
- A space is κ-collectionwise Hausdorff if every discrete collection of size ≤ κ consisting of points (singletons) is separated.
- A space is κ-collectionwise normal if every discrete collection of ≤ κ many closed sets is separated.
- A space is weakly-κ-collectionwise Hausdorff if every discrete collection of κ points (singletons) has some separated subcollection of size κ.

- A collection \mathcal{Y} of subsets of a topological space is **discrete** if each point in the space has a neighbourhood which meets at most one member of the collection.
- A discrete collection 𝒱 is separated if there exist pairwise disjoint open sets U_Y for each Y ∈ 𝒱 such that Y ⊆ U_Y.
- A space is κ-collectionwise Hausdorff if every discrete collection of size ≤ κ consisting of points (singletons) is separated.
- A space is κ-collectionwise normal if every discrete collection of ≤ κ many closed sets is separated.
- A space is weakly-κ-collectionwise Hausdorff if every discrete collection of κ points (singletons) has some separated subcollection of size κ.

- A collection \mathcal{Y} of subsets of a topological space is **discrete** if each point in the space has a neighbourhood which meets at most one member of the collection.
- A discrete collection 𝒱 is separated if there exist pairwise disjoint open sets U_Y for each Y ∈ 𝒱 such that Y ⊆ U_Y.
- A space is κ-collectionwise Hausdorff if every discrete collection of size ≤ κ consisting of points (singletons) is separated.
- A space is κ-collectionwise normal if every discrete collection of ≤ κ many closed sets is separated.
- A space is weakly-κ-collectionwise Hausdorff if every discrete collection of κ points (singletons) has some separated subcollection of size κ.

- A collection \mathcal{Y} of subsets of a topological space is **discrete** if each point in the space has a neighbourhood which meets at most one member of the collection.
- A discrete collection 𝒱 is separated if there exist pairwise disjoint open sets U_Y for each Y ∈ 𝒱 such that Y ⊆ U_Y.
- A space is κ-collectionwise Hausdorff if every discrete collection of size ≤ κ consisting of points (singletons) is separated.
- A space is κ-collectionwise normal if every discrete collection of ≤ κ many closed sets is separated.
- A space is weakly-κ-collectionwise Hausdorff if every discrete collection of κ points (singletons) has some separated subcollection of size κ.

- A collection *Y* of subsets of a topological space is **discrete** if each point in the space has a neighbourhood which meets at most one member of the collection.
- A discrete collection 𝒱 is separated if there exist pairwise disjoint open sets U_Y for each Y ∈ 𝒱 such that Y ⊆ U_Y.
- A space is κ-collectionwise Hausdorff if every discrete collection of size ≤ κ consisting of points (singletons) is separated.
- A space is κ-collectionwise normal if every discrete collection of ≤ κ many closed sets is separated.
- A space is weakly-κ-collectionwise Hausdorff if every discrete collection of κ points (singletons) has some separated subcollection of size κ.

Definition (κ -paracompactness)

- Recall that a refinement of a cover \mathcal{U} of a topological space X is a cover \mathcal{V} of X such that for every $V \in \mathcal{V}$ there is some $U_V \in \mathcal{U}$ such that $V \subset U_V$.
- We say that V is **locally finite** if every point in the space has a neighbourhood which meets finitely many elements of V.
- A topological space is κ-paracompact if every open cover of size ≤ κ has a locally finite open refinement.

11/29/2016

Definition (κ -paracompactness)

- Recall that a refinement of a cover U of a topological space X is a cover V of X such that for every V ∈ V there is some U_V ∈ U such that V ⊂ U_V.
- We say that V is **locally finite** if every point in the space has a neighbourhood which meets finitely many elements of V.

 A topological space is κ-paracompact if every open cover of size ≤ κ has a locally finite open refinement.

11/29/2016

Definition (κ -paracompactness)

- Recall that a refinement of a cover U of a topological space X is a cover V of X such that for every V ∈ V there is some U_V ∈ U such that V ⊂ U_V.
- We say that V is **locally finite** if every point in the space has a neighbourhood which meets finitely many elements of V.
- A topological space is κ-paracompact if every open cover of size ≤ κ has a locally finite open refinement.

11/29/2016

Theorem (Tall)

In the model V[G * H], let X be a first countable topological space.

- (a) If X is weakly-ℵ₁-collectionwise Hausdorff, then X is weakly-ℵ₂-collectionwise Hausdorff.
- (b) If X is locally \aleph_2 -c.c. and \aleph_1 -collectionwise Hausdorff, then X is \aleph_2 -collectionwise Hausdorff.
- (c) If X has size ≤ ℵ₂ and is normal and hereditarily ℵ₁-paracompact, then X is paracompact.

Theorem (Tall)

In the model V[G * H], let X be a first countable topological space.

- (a) If X is weakly-ℵ₁-collectionwise Hausdorff, then X is weakly-ℵ₂-collectionwise Hausdorff.
- (b) If X is locally ℵ₂-c.c. and ℵ₁-collectionwise Hausdorff, then X is ℵ₂-collectionwise Hausdorff.
- (c) If X has size $\leq \aleph_2$ and is normal and hereditarily \aleph_1 -paracompact, then X is paracompact.

Theorem (Tall)

In the model V[G * H], let X be a first countable topological space.

- (a) If X is weakly-ℵ₁-collectionwise Hausdorff, then X is weakly-ℵ₂-collectionwise Hausdorff.
- (b) If X is locally \aleph_2 -c.c. and \aleph_1 -collectionwise Hausdorff, then X is \aleph_2 -collectionwise Hausdorff.
- (c) If X has size $\leq \aleph_2$ and is normal and hereditarily \aleph_1 -paracompact, then X is paracompact.

Theorem (Tall)

In the model V[G * H], let X be a first countable topological space.

- (a) If X is weakly-ℵ₁-collectionwise Hausdorff, then X is weakly-ℵ₂-collectionwise Hausdorff.
- (b) If X is locally \aleph_2 -c.c. and \aleph_1 -collectionwise Hausdorff, then X is \aleph_2 -collectionwise Hausdorff.

11/29/2016

13 / 23

(c) If X has size $\leq \aleph_2$ and is normal and hereditarily \aleph_1 -paracompact, then X is paracompact.

Example (Rudin-Tall)

Suppose there exists $S \subseteq E_{\omega_0}^{\omega_2} = \{ \alpha \in \omega_2 : cf(\alpha) = \omega_0 \}$ which is stationary and does not reflect. Then (c) fails.

Example (Fleissner)

Suppose the existence of S like above. Then (b) fails.

Example (LaBergue-Landver)

Suppose \Box_{ω_1} . Then there exists a first countable \aleph_1 -collectionwise Hausdorff space which is not weakly \aleph_2 -collectionwise Hausdorff (hence (a) fails).

11/29/2016 14 / 23

Example (Rudin-Tall)

Suppose there exists $S \subseteq E_{\omega_0}^{\omega_2} = \{ \alpha \in \omega_2 : cf(\alpha) = \omega_0 \}$ which is stationary and does not reflect. Then (c) fails.

Example (Fleissner)

Suppose the existence of S like above. Then (b) fails.

Example (LaBergue-Landver)

Suppose \Box_{ω_1} . Then there exists a first countable \aleph_1 -collectionwise Hausdorff space which is not weakly \aleph_2 -collectionwise Hausdorff (hence (a) fails).

11/29/2016 14 / 23

Example (Rudin-Tall)

Suppose there exists $S \subseteq E_{\omega_0}^{\omega_2} = \{ \alpha \in \omega_2 : cf(\alpha) = \omega_0 \}$ which is stationary and does not reflect. Then (c) fails.

Example (Fleissner)

Suppose the existence of S like above. Then (b) fails.

Example (LaBergue-Landver)

Suppose \Box_{ω_1} . Then there exists a first countable \aleph_1 -collectionwise Hausdorff space which is not weakly \aleph_2 -collectionwise Hausdorff (hence (a) fails).

11/29/2016

Going back to the transfer property of the chromatic number, it is easy to see that:

$\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_2)\wedge\mathsf{Tr}_{\mathsf{Chr}}(\aleph_2,\aleph_1)\Longrightarrow\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_1)$

But does the reciprocal holds?

NO, if ZFC +" there exists a huge cardinal " is consistent.

11/29/2016

Going back to the transfer property of the chromatic number, it is easy to see that:

$$\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_2)\wedge\mathsf{Tr}_{\mathsf{Chr}}(\aleph_2,\aleph_1)\Longrightarrow\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_1)$$

But does the reciprocal holds?

NO, if ZFC +" there exists a huge cardinal " is consistent.

11/29/2016

Going back to the transfer property of the chromatic number, it is easy to see that:

$$\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_2)\wedge\mathsf{Tr}_{\mathsf{Chr}}(\aleph_2,\aleph_1)\Longrightarrow\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_1)$$

But does the reciprocal holds?

NO, if ZFC +" there exists a huge cardinal " is consistent.

11/29/2016

Theorem

Assuming the existence of a huge cardinal, then there exists W a forcing extension of V such that

$$W \models "\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1) \land \neg \mathsf{Tr}_{\mathsf{Chr}}(\aleph_2, \aleph_1)"$$

11/29/2016

16 / 23

O. M. Rodriges, André (Kobe University)On some downwards transfer properties c

- Suppose the existence of a huge cardinal κ with target $\lambda.$
- We can modify the poset $\mathbb{P} * \mathbb{R}$ to create $\mathbb{P}' * \mathbb{R}'$ such that

$$\mathbb{P}' \ast \dot{\mathbb{R}}' \models ``k = \aleph_1 \land \kappa^+ = \aleph_2 \land \lambda = \aleph_3 \land \mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1)"$$

- Let B be the poset created by Baumgartner. By taking advantage of the small size and countable closure of B, we can construct P" such that P" * R' * B still forces the above.
- So we conclude that

 $\mathbb{P}'' \ast \mathbb{\dot{R}}' \ast \mathbb{\dot{B}} \models ``\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1) \land \neg \mathsf{Tr}_{\mathsf{Chr}}(\aleph_2, \aleph_1) "$

- Suppose the existence of a huge cardinal κ with target $\lambda.$
- \bullet We can modify the poset $\mathbb{P}\ast\dot{\mathbb{R}}$ to create $\mathbb{P}'\ast\dot{\mathbb{R}}'$ such that

$$\mathbb{P}' \ast \dot{\mathbb{R}}' \models ``k = \aleph_1 \land \kappa^+ = \aleph_2 \land \lambda = \aleph_3 \land \mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1)"$$

- Let B be the poset created by Baumgartner. By taking advantage of the small size and countable closure of B, we can construct P" such that P" * R' * B still forces the above.
- So we conclude that

 $\mathbb{P}'' \ast \dot{\mathbb{R}}' \ast \dot{\mathbb{B}} \models `` \mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1) \land \neg \mathsf{Tr}_{\mathsf{Chr}}(\aleph_2, \aleph_1) ''$

- Suppose the existence of a huge cardinal κ with target $\lambda.$
- \bullet We can modify the poset $\mathbb{P}\ast\dot{\mathbb{R}}$ to create $\mathbb{P}'\ast\dot{\mathbb{R}}'$ such that

$$\mathbb{P}' \ast \dot{\mathbb{R}}' \models ``k = \aleph_1 \land \kappa^+ = \aleph_2 \land \lambda = \aleph_3 \land \mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1)"$$

- Let B be the poset created by Baumgartner. By taking advantage of the small size and countable closure of B, we can construct P" such that P" * R' * B still forces the above.
- So we conclude that

 $\mathbb{P}'' \ast \mathbb{\dot{R}}' \ast \mathbb{\dot{B}} \Vdash ``\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1) \land \neg \mathsf{Tr}_{\mathsf{Chr}}(\aleph_2, \aleph_1)''$

- Suppose the existence of a huge cardinal κ with target $\lambda.$
- \bullet We can modify the poset $\mathbb{P}\ast\dot{\mathbb{R}}$ to create $\mathbb{P}'\ast\dot{\mathbb{R}}'$ such that

$$\mathbb{P}' \ast \mathbb{\dot{R}}' \models ``k = \aleph_1 \land \kappa^+ = \aleph_2 \land \lambda = \aleph_3 \land \mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1)"$$

- Let B be the poset created by Baumgartner. By taking advantage of the small size and countable closure of B, we can construct P" such that P" * R' * B still forces the above.
- So we conclude that

$$\mathbb{P}'' \ast \dot{\mathbb{R}}' \ast \dot{\mathbb{B}} \Vdash ``\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3, \aleph_1) \land \neg \mathsf{Tr}_{\mathsf{Chr}}(\aleph_2, \aleph_1)"$$

We can use the same argument with Tall's result (a) . Instead of \mathbb{B} , we use a poset which forces \Box_{ω_1} . We obtain:

Theorem

Suppose the existence of a huge cardinal. Then there exists a forcing extension W of V in which every first countable weakly \aleph_1 -collectionwise Hausdorff space is \aleph_3 -collectionwise Hausdorff, but there exists some first countable \aleph_1 -collectionwise Hausdorff which is not weakly \aleph_2 -collectionwise Hausdorff in W.

By changing the parameters on the construction of the poset ${\mathbb B}$ by Baumgartner, we obtain:

Theorem

Let κ be regular. Assume that $2^{\kappa} = \kappa^+$. Then there is a $\leq \kappa$ -closed κ^{++} -c.c. poset $\mathbb{B}(\kappa)$ of size $\leq \kappa^{++}$ which adds a graph of size and chromatic number κ^{++} such that all subgraphs of size $\leq \kappa^+$ have chromatic number $\leq \kappa$.

In particular, this means that, for any regular κ , the consistency of the failure of $\text{Tr}_{Chr}(\kappa^{++}, \kappa^{+})$ is consistent.

By changing the parameters on the construction of the poset ${\mathbb B}$ by Baumgartner, we obtain:

Theorem

Let κ be regular. Assume that $2^{\kappa} = \kappa^+$. Then there is a $\leq \kappa$ -closed κ^{++} -c.c. poset $\mathbb{B}(\kappa)$ of size $\leq \kappa^{++}$ which adds a graph of size and chromatic number κ^{++} such that all subgraphs of size $\leq \kappa^+$ have chromatic number $\leq \kappa$.

In particular, this means that, for any regular κ , the consistency of the failure of $\text{Tr}_{Chr}(\kappa^{++}, \kappa^{+})$ is consistent.

11/29/2016

By changing the parameters on the construction of the poset ${\mathbb B}$ by Baumgartner, we obtain:

Theorem

Let κ be regular. Assume that $2^{\kappa} = \kappa^+$. Then there is a $\leq \kappa$ -closed κ^{++} -c.c. poset $\mathbb{B}(\kappa)$ of size $\leq \kappa^{++}$ which adds a graph of size and chromatic number κ^{++} such that all subgraphs of size $\leq \kappa^+$ have chromatic number $\leq \kappa$.

In particular, this means that, for any regular κ , the consistency of the failure of $\text{Tr}_{Chr}(\kappa^{++}, \kappa^{+})$ is consistent.

11/29/2016

Using the above generalization together with the previous argument, we obtain the generalized version:

Theorem

Suppose κ is a huge cardinal with target λ . Let α be an ordinal such that $(\aleph_{\alpha})^{V} < \kappa$ is regular. Let also $n + 2 < m < \omega$. Then, there exists W a generic extension of V such that $(\aleph_{\alpha+1})^{W} = \kappa$, $(\aleph_{\alpha+m})^{W} = \lambda$ and

$$W \models \text{``Tr}_{\mathsf{Chr}}(\aleph_{\alpha+m}, \aleph_{\alpha+1}) \land \neg \mathsf{Tr}_{\mathsf{Chr}}(\aleph_{\alpha+n+2}, \aleph_{\alpha+n+1})\text{''}$$

11/29/2016

Question

Is it consistent (modulo some large cardinal assumption) that

 $\mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_1) \not\Longrightarrow \mathsf{Tr}_{\mathsf{Chr}}(\aleph_3,\aleph_2)?$

Question

Can we obtain the consistency of some of these transfer properties from some weaker large cardinal assumption?

Question

Are these transfer properties consistent with the negation of GCH?

11/29/2016

Question

Is it consistent (modulo some large cardinal assumption) that

 $\operatorname{Tr}_{\operatorname{Chr}}(\aleph_3, \aleph_1) \not\Longrightarrow \operatorname{Tr}_{\operatorname{Chr}}(\aleph_3, \aleph_2)?$

Question

Can we obtain the consistency of some of these transfer properties from some weaker large cardinal assumption?

Question

Are these transfer properties consistent with the negation of GCH?

11/29/2016

Question

Is it consistent (modulo some large cardinal assumption) that

 $\operatorname{Tr}_{\operatorname{Chr}}(\aleph_3, \aleph_1) \not\Longrightarrow \operatorname{Tr}_{\operatorname{Chr}}(\aleph_3, \aleph_2)?$

Question

Can we obtain the consistency of some of these transfer properties from some weaker large cardinal assumption?

Question

Are these transfer properties consistent with the negation of GCH?

11/29/2016

Thank you very much!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

References

James E. Baumgartner.

Generic graph construction.

J. Symbolic Logic, 49(1):234–240, 1984.

Matthew Foreman and Richard Laver. Some downwards transfer properties for ℵ₂. Adv. in Math., 67(2):230–238, 1988.

Kenneth Kunen.

Saturated ideals.

J. Symbolic Logic, 43(1):65-76, 1978.

Franklin D. Tall.

Topological applications of generic huge embeddings. *Trans. Amer. Math. Soc.*, 341(1):45–68, 1994.