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Some cardinal invariants

For f , g ∈ ωω denote

f ≤∗ g (f dominated by g) iff ∃m∀n ≥ m(f (n) ≤ g(n)).

f 6=∗ g (f and g are eventually different) iff ∃m∀n ≥ m(f (n) 6= g(n)).

Consider

b = min{|F | : F ⊆ ωω and ¬∃g ∈ ωω∀f ∈ F (f≤∗g)}

(Bartoszyński 1987)

non(M) = min{|F | : F ⊆ ωω and ¬∃g ∈ ωω∀f ∈ F (f 6=∗g)}
cov(M) = min{|E | : E ⊆ ωω and ∀f ∈ ωω∃g ∈ E (f 6=∗g)}

E: Stantard Suslin σ-centered poset which adds an eventually different
real (works to increase non(M)).
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Consistency example (1)

Theorem (From Brendle, Judah and Shelah’s fsi of ccc posets
techniques 1990’s)

If θ0 ≤ θ1 ≤ θ2 are uncountable regular cardinals and λ<θ2 = λ, then it is
consistent that

b b b b b

b b

b b b b b

λ

θ0

θ1 θ2

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c
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Consistency example (2)

Theorem (From Brendle, Judah and Shelah’s fsi of ccc posets
techniques 1990’s)

If θ0 ≤ θ1 ≤ θ2 ≤ µ are uncountable regular cardinals and λ ≥ µ such that
λ<θ2 = λ, then it is consistent that

b b b b b

b b

b b b b b

θ0

θ1

θ2

µ

µ

λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c
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Main Problem

Problem

Is it consistent that b < non(M) < cov(M)?

Natural approach: Use a fsi of posets of the form EN where N is some
transitive model of ZFC∗ of size < µ (to force µ = non(M)).

Theorem (Miller 1981)

E does not add dominating reals.

However,

Theorem (Pawlikowski 1992)

There are posets of the form EN (as above) adding dominating reals.
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Eventually different real forcing

For ϕ : ω → [ω]<ℵ0 define the width of ϕ as

wd(ϕ) := min{n∗ ≤ ω : ∀i < ω(|ϕ(i)| ≤ n∗)}

Definition

The poset E is defined as follows.

Conditions: (s, ϕ) where s ∈ ω<ω and ϕ : ω → [ω]<ℵ0 with finite width.

Order: (s ′, ϕ′) ≤ (s, ϕ) iff s ⊆ s ′, ∀i < ω(ϕ(i) ⊆ ϕ′(i)) and
s ′(i) /∈ ϕ(i) for all i ∈ |s ′|r |s|.

Clearly, E is Suslin σ-centered and the generic real
e :=

⋃{s : ∃ϕ((s, ϕ) ∈ G )} is eventually different over the ground model.
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Eventually different real forcing

For ϕ : ω → [ω]<ℵ0 define the width of ϕ as

wd(ϕ) := min{n∗ ≤ ω : ∀i < ω(|ϕ(i)| ≤ n∗)}

Definition

The poset E is defined as follows.

Conditions: (s, ϕ) where s ∈ ω<ω and ϕ : ω → [ω]<ℵ0 with finite width.

Order: (s ′, ϕ′) ≤ (s, ϕ) iff s ⊆ s ′, ∀i < ω(ϕ(i) ⊆ ϕ′(i)) and
s ′(i) /∈ ϕ(i) for all i ∈ |s ′|r |s|.

Clearly, E is Suslin σ-centered and the generic real
e :=

⋃{s : ∃ϕ((s, ϕ) ∈ G )} is eventually different over the ground model.

Diego A. Mej́ıa (Shizuoka University) The left side of Cichoń’s diagram RIMS 2016.11.29 6 / 17
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Eventually different real forcing

For ϕ : ω → [ω]<ℵ0 define the width of ϕ as

wd(ϕ) := min{n∗ ≤ ω : ∀i < ω(|ϕ(i)| ≤ n∗)}

Definition

The poset E is defined as follows.

Conditions: (s, ϕ) where s ∈ ω<ω and ϕ : ω → [ω]<ℵ0 with finite width.

Order: (s ′, ϕ′) ≤ (s, ϕ) iff s ⊆ s ′, ∀i < ω(ϕ(i) ⊆ ϕ′(i)) and
s ′(i) /∈ ϕ(i) for all i ∈ |s ′|r |s|.

Clearly, E is Suslin σ-centered and the generic real
e :=

⋃{s : ∃ϕ((s, ϕ) ∈ G )} is eventually different over the ground model.

Diego A. Mej́ıa (Shizuoka University) The left side of Cichoń’s diagram RIMS 2016.11.29 6 / 17



Ultrafilter limits

Fix D a non-principal ultrafilter on ω.

Definition

(1) If 〈an : n < ω〉 is a sequence of subsets of ω, define its D-limit
a = limD

n an as
k ∈ a iff {n < ω : k ∈ an} ∈ D.

(2) If ϕn : ω → P(ω) for n < ω, ϕ = limD
n ϕn : ω → P(ω) is defined as

ϕ(i) = limD
n ϕn(i).

Fact

Note that, if there is an m < ω such that wd(ϕn) ≤ m for all n < ω, then
its D-limit has also width ≤ m.
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Ultrafilter limits

Fix D a non-principal ultrafilter on ω.

Definition

(1) If 〈an : n < ω〉 is a sequence of subsets of ω, define its D-limit
a = limD

n an as
k ∈ a iff {n < ω : k ∈ an} ∈ D.

(2) If ϕn : ω → P(ω) for n < ω, ϕ = limD
n ϕn : ω → P(ω) is defined as

ϕ(i) = limD
n ϕn(i).

Fact

Note that, if there is an m < ω such that wd(ϕn) ≤ m for all n < ω, then
its D-limit has also width ≤ m.

Diego A. Mej́ıa (Shizuoka University) The left side of Cichoń’s diagram RIMS 2016.11.29 7 / 17
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Ultrafilter limits

A sequence p̄ = 〈pn : n < ω〉 of conditions from E is uniform if there are
s ∈ ω<ω and an m < ω such that each pn = (s, ϕn) with wd(ϕn) ≤ m.

Here, we define limD p̄ = limD
n pn = (s, limD

n ϕn) ∈ E.

Theorem (Miller 1981 (revisited))

If p̄ = 〈pn : n < ω〉 is an uniform sequence in E then limD p̄ forces that
{n < ω : pn ∈ Ġ} is infinite. Moreover, there is an E-name Ḋ∗ of an
ultrafilter on ω containing D such that, for every uniform sequence p̄ in E,
limD p̄ forces

{n < ω : pn ∈ Ġ} ∈ Ḋ∗.
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Strategy

Let ℵ1 < µ < λ be cardinals such that µ is regular and λ<µ = λ.

To force b = ℵ1 < non(M) = µ < cov(M) = λ, we plan to use a fsi
P = 〈Pα, Q̇α : α < δ〉 with δ = λµ so that

(1) Q̇α is a P′α-name for EVP′α where P′α l Pα has size ≤ µ.

(2) P forces that any set of reals of size < µ is in VP
′
α for some α < δ.

It is clear that P forces non(M) = µ < cov(M) = c = λ.

Plan: Construct such an iteration where we can prove a version of Miller’s
theorem. For that, we should clarify in the context of P what is

(i) a uniform countable sequence p̄ = 〈pn : n < ω〉 from P,

(ii) define some sort of limit for any such uniform sequence, and

(iii) prove that this limit forces that {n < ω : pn ∈ Ġ} is infinite.
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Diego A. Mej́ıa (Shizuoka University) The left side of Cichoń’s diagram RIMS 2016.11.29 9 / 17
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Strategy

Let ℵ1 < µ < λ be cardinals such that µ is regular and λ<µ = λ.
To force b = ℵ1 < non(M) = µ < cov(M) = λ, we plan to use a fsi
P = 〈Pα, Q̇α : α < δ〉 with δ = λµ so that

(1) Q̇α is a P′α-name for EVP′α where P′α l Pα has size ≤ µ.

(2) P forces that any set of reals of size < µ is in VP
′
α for some α < δ.

It is clear that P forces non(M) = µ < cov(M) = c = λ.

Plan: Construct such an iteration where we can prove a version of Miller’s
theorem. For that, we should clarify in the context of P what is

(i) a uniform countable sequence p̄ = 〈pn : n < ω〉 from P,

(ii) define some sort of limit for any such uniform sequence, and

(iii) prove that this limit forces that {n < ω : pn ∈ Ġ} is infinite.

Diego A. Mej́ıa (Shizuoka University) The left side of Cichoń’s diagram RIMS 2016.11.29 9 / 17
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Attempt

Let’s try to prove that some unbounded family from the ground model is
preserved.

Assume F ⊆ ωω uncountable such that, for every g ∈ ωω,

{f ∈ F : f ≤∗ g} is countable.

Assume that P does not preserve this property for F , i.e., there is some
p ∈ P and a P-name ġ of a member of ωω such that

p  {f ∈ F : f ≤∗ ġ} is uncountable.

For each ξ < ω1, find pξ ≤ p in P, fξ ∈ F and mξ < ω so that

(i) pξ  fξ ≤mξ
ġ , i.e., ∀n ≥ mξ(fξ(n) ≤ ġ(n)), and

(ii) ξ 6= η implies fξ 6= fη.

WLOG, every mξ are equal to a single m∗ and {pξ : ξ < ω} forms a
uniform ∆-system.
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p ∈ P and a P-name ġ of a member of ωω such that

p  {f ∈ F : f ≤∗ ġ} is uncountable.
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Attempt

Let’s try to prove that some unbounded family from the ground model is
preserved. Assume F ⊆ ωω uncountable such that, for every g ∈ ωω,

{f ∈ F : f ≤∗ g} is countable.

Assume that P does not preserve this property for F , i.e., there is some
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p ∈ P and a P-name ġ of a member of ωω such that

p  {f ∈ F : f ≤∗ ġ} is uncountable.
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Attempt

Claim

There are i∗ ≥ m∗ and an increasing sequence 〈ξn : n < ω〉 in ω1 such that
〈fξn(i∗) : n < ω〉 is increasing.

Point: Find a q ∈ P that forces “Ȧ := {n < ω : pξn ∈ Ġ} infinite” to yield
a contradiction and conclude that F is preserved unbounded.

It seems likely that

(i) supp(q) is the root of the ∆-system and

(ii) for α ∈ supp(q), q(α) is some ultrafilter limit of 〈pξn(α) : n < ω〉.
Moreover, if this ultrafilter is Ḋα, we need that

Pα Ḋα ∩ VP
′
α ∈ VP

′
α

to guarantee Pα q(α) ∈ Q̇α.
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Construction of chains of ultrafilters

A sequence p̄ = 〈pn : n < ω〉 from P is uniform if it is a uniform ∆-system.

Sadly, a single sequence 〈Ḋα : α ≤ δ〉 of names of ultrafilters may not
work for all the uniform sequences.

The iteration, along with χ-many increasing chains of ultrafilters, are
constructed simultaneously by recursion:

Successor step: Assume that Pα along with the chain of ultrafilters
〈Ḋε

ξ : ξ ≤ α〉 for each ε < χ, has been constructed.

Also fix Ḟα a Pα-name for a subset of ωω of size < µ (counting argument).
Then, there is some P′α l Pα of size ≤ max{χ, µ}ℵ0 so that Ḟα is a
P′α-name and there is a P′α-name for Ḋε

α ∩ VP
′
α .

So Q̇α is a P′α-name for EVP′α .
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P′α-name and there is a P′α-name for Ḋε
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α ∩ VP
′
α .

So Q̇α is a P′α-name for EVP′α .

Diego A. Mej́ıa (Shizuoka University) The left side of Cichoń’s diagram RIMS 2016.11.29 12 / 17
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Construction of chains of ultrafilters

Ḋε
α+1 is constructed (as a Pα+1-name) so that it extends Ḋε

α and

if p̄ is a
uniform sequence from Pα+1 whose limit can be calculated by the ε-th
chain, then this limit forces

{n < ω : pn ∈ Ġα+1} ∈ Ḋε
α+1.

Limit step: Pα is just the direct limit, but Dε
α should be constructed so

that, for any uniform sequence p̄ from Pα whose limit can be calculated
by the ε-th chain, its limit forces

{n < ω : pn ∈ Ġα} ∈ Ḋε
α.
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α and if p̄ is a
uniform sequence from Pα+1 whose limit can be calculated by the ε-th
chain, then this limit forces

{n < ω : pn ∈ Ġα+1} ∈ Ḋε
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Construction of chains of ultrafilters

Fact

A uniform sequence p̄ defines a countable partial function c p̄ = (c p̄0 , c
p̄
1 )

from δ into ω<ω × ω with domc p̄ =
⋃

n<ω supp(pn) such that, for each

n < ω and α ∈ supp(pn), pn(α) is of the form (c p̄0 (α), ϕ̇) where ϕ̇ is a
P′α-name of a slalom of width c p̄1 (α).
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Construction of chains of ultrafilters

Technicality

For each h : δ → ω<ω × ω, it can be found a single chain of ultrafilters
such that it calculates limits for any uniform sequence p̄ with c p̄ ⊆ h

Theorem (Engelking and Kar lowicz 1965)

Assume CH and δ < (2ℵ1)+. Then, there is a set {hε : ε < ω1} of (total)
functions from δ into ω1 such that every countable partial function from δ
to ω1 is contained in some hε.

So, under CH, if λ ≤ 2ℵ1 and µℵ0 = µ then we only need ℵ1-many chains
of ultrafilters.
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Construction of chains of ultrafilters

Technicality

For each h : δ → ω<ω × ω, it can be found a single chain of ultrafilters
such that it calculates limits for any uniform sequence p̄ with c p̄ ⊆ h

Theorem (Engelking and Kar lowicz 1965)

Assume CH and δ < (2ℵ1)+. Then, there is a set {hε : ε < ω1} of (total)
functions from δ into ω1 such that every countable partial function from δ
to ω1 is contained in some hε.

So, under CH, if λ ≤ 2ℵ1 and µℵ0 = µ then we only need ℵ1-many chains
of ultrafilters.
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Main Result

Theorem (Goldstern and M. and Shelah)

Let θ0 ≤ θ1 ≤ κ = κℵ0 ≤ µ = µℵ0 be uncountable regular cardinals,
µ < λ = λ<µ ≤ 2κ and assume b = d = κ. Then, there is a ccc poset
forcing

b b b b b

b b

b b b b b

θ0

θ1

κ

µ

λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c
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Question

Open question

Is it consistent that b < non(M) < cov(M) < c?

b b b b b

b b

b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c
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