The left side of Cichoń's diagram

Diego A. Mejía diego.mejia@shizuoka.ac.jp

Shizuoka University

Joint work with Martin Goldstern and Saharon Shelah

RIMS Workshop Infinite combinatorics and forcing theory November 29th, 2016

Some cardinal invariants

For $f, g \in \omega^{\omega}$ denote

Image: A matrix and a matrix

-

3

• $f \leq^* g$ (f dominated by g) iff $\exists m \forall n \geq m(f(n) \leq g(n))$.

- $f \leq^* g$ (f dominated by g) iff $\exists m \forall n \geq m(f(n) \leq g(n))$.
- $f \neq^* g$ (f and g are eventually different) iff $\exists m \forall n \geq m(f(n) \neq g(n))$.

• $f \leq^* g$ (f dominated by g) iff $\exists m \forall n \geq m(f(n) \leq g(n))$.

• $f \neq^* g$ (f and g are eventually different) iff $\exists m \forall n \ge m(f(n) \neq g(n))$. Consider

$$\mathfrak{b} = \min\{|F| : F \subseteq \omega^{\omega} \text{ and } \neg \exists g \in \omega^{\omega} \forall f \in F(f \leq^* g)\}$$

• $f \leq^* g$ (f dominated by g) iff $\exists m \forall n \geq m(f(n) \leq g(n))$.

• $f \neq^* g$ (f and g are eventually different) iff $\exists m \forall n \ge m(f(n) \neq g(n))$. Consider

$$\mathfrak{b} = \min\{|F| : F \subseteq \omega^{\omega} \text{ and } \neg \exists g \in \omega^{\omega} \forall f \in F(f \leq^* g)\}$$

(Bartoszyński 1987)

$$\begin{split} & \operatorname{non}(\mathcal{M}) = \min\{|F| : F \subseteq \omega^{\omega} \text{ and } \neg \exists g \in \omega^{\omega} \forall f \in F(f \neq^* g)\} \\ & \operatorname{cov}(\mathcal{M}) = \min\{|E| : E \subseteq \omega^{\omega} \text{ and } \forall f \in \omega^{\omega} \exists g \in E(f \neq^* g)\} \end{split}$$

• $f \leq^* g$ (f dominated by g) iff $\exists m \forall n \geq m(f(n) \leq g(n))$.

• $f \neq^* g$ (f and g are eventually different) iff $\exists m \forall n \ge m(f(n) \neq g(n))$. Consider

$$\mathfrak{b} = \min\{|F| : F \subseteq \omega^{\omega} \text{ and } \neg \exists g \in \omega^{\omega} \forall f \in F(f \leq^* g)\}$$

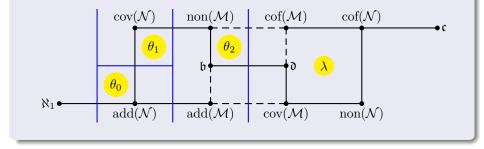
(Bartoszyński 1987)

 $\begin{array}{l} \operatorname{non}(\mathcal{M}) = \min\{|F| : F \subseteq \omega^{\omega} \text{ and } \neg \exists g \in \omega^{\omega} \forall f \in F(f \neq^* g)\} \\ \operatorname{cov}(\mathcal{M}) = \min\{|E| : E \subseteq \omega^{\omega} \text{ and } \forall f \in \omega^{\omega} \exists g \in E(f \neq^* g)\} \end{array}$

E: Stantard Suslin σ -centered poset which adds an eventually different real (works to increase non(\mathcal{M})).

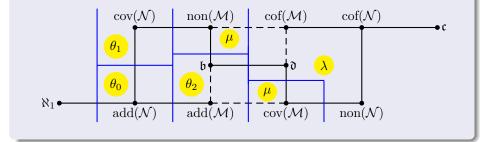
Theorem (From Brendle, Judah and Shelah's fsi of ccc posets techniques 1990's)

If $\theta_0 \leq \theta_1 \leq \theta_2$ are uncountable regular cardinals and $\lambda^{<\theta_2} = \lambda$, then it is consistent that



Theorem (From Brendle, Judah and Shelah's fsi of ccc posets techniques 1990's)

If $\theta_0 \leq \theta_1 \leq \theta_2 \leq \mu$ are uncountable regular cardinals and $\lambda \geq \mu$ such that $\lambda^{<\theta_2} = \lambda$, then it is consistent that



Is it consistent that $\mathfrak{b} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$?

э

Is it consistent that $\mathfrak{b} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$?

<u>Natural approach</u>: Use a fsi of posets of the form \mathbb{E}^N where N is some transitive model of ZFC^{*} of size $< \mu$ (to force $\mu = \operatorname{non}(\mathcal{M})$).

Is it consistent that $\mathfrak{b} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$?

<u>Natural approach</u>: Use a fsi of posets of the form \mathbb{E}^N where N is some transitive model of ZFC^{*} of size $< \mu$ (to force $\mu = \operatorname{non}(\mathcal{M})$).

Theorem (Miller 1981)

 ${\mathbb E}$ does not add dominating reals.

Is it consistent that $\mathfrak{b} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$?

<u>Natural approach</u>: Use a fsi of posets of the form \mathbb{E}^N where N is some transitive model of ZFC^{*} of size $< \mu$ (to force $\mu = \operatorname{non}(\mathcal{M})$).

Theorem (Miller 1981)

E does not add dominating reals.

However,

Theorem (Pawlikowski 1992)

There are posets of the form \mathbb{E}^{N} (as above) adding dominating reals.

- 4 同 6 4 日 6 4 日 6

For $\varphi:\omega\to [\omega]^{<\aleph_0}$ define the width of φ as

$$\operatorname{wd}(\varphi) := \min\{n^* \leq \omega : \forall i < \omega(|\varphi(i)| \leq n^*)\}$$

3

< 4 **₽** ► <

For $\varphi:\omega\to [\omega]^{<\aleph_0}$ define the width of φ as

$$\operatorname{wd}(\varphi) := \min\{n^* \leq \omega : \forall i < \omega(|\varphi(i)| \leq n^*)\}$$

Definition

The poset \mathbbm{E} is defined as follows.

For $\varphi:\omega\to [\omega]^{<\aleph_0}$ define the width of φ as

$$\operatorname{wd}(\varphi) := \min\{n^* \leq \omega : \forall i < \omega(|\varphi(i)| \leq n^*)\}$$

Definition

The poset \mathbb{E} is defined as follows.

Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi : \omega \to [\omega]^{<\aleph_0}$ with <u>finite</u> width.

For $\varphi:\omega\to [\omega]^{<\aleph_0}$ define the width of φ as

$$\operatorname{wd}(\varphi) := \min\{n^* \leq \omega : \forall i < \omega(|\varphi(i)| \leq n^*)\}$$

Definition

The poset $\mathbb E$ is defined as follows.

Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi : \omega \to [\omega]^{<\aleph_0}$ with <u>finite</u> width. Order: $(s', \varphi') \leq (s, \varphi)$ iff $s \subseteq s', \forall i < \omega(\varphi(i) \subseteq \varphi'(i))$ and $s'(i) \notin \varphi(i)$ for all $i \in |s'| \smallsetminus |s|$.

For $\varphi:\omega\to [\omega]^{<\aleph_0}$ define the width of φ as

$$\operatorname{wd}(\varphi) := \min\{n^* \leq \omega : \forall i < \omega(|\varphi(i)| \leq n^*)\}$$

Definition

The poset $\mathbb E$ is defined as follows.

Conditions: (s, φ) where $s \in \omega^{<\omega}$ and $\varphi : \omega \to [\omega]^{<\aleph_0}$ with <u>finite</u> width. Order: $(s', \varphi') \leq (s, \varphi)$ iff $s \subseteq s', \forall i < \omega(\varphi(i) \subseteq \varphi'(i))$ and $s'(i) \notin \varphi(i)$ for all $i \in |s'| \setminus |s|$.

Clearly, \mathbb{E} is Suslin σ -centered and the generic real $e := \bigcup \{s : \exists \varphi((s, \varphi) \in G)\}$ is eventually different over the ground model.

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

< 🗇 🕨

э

Definition (1) If $\langle a_n : n < \omega \rangle$ is a sequence of subsets of ω , define its *D*-limit $a = \lim_n^D a_n$ as $k \in a \text{ iff } \{n < \omega : k \in a_n\} \in D.$

Definition (1) If $\langle a_n : n < \omega \rangle$ is a sequence of subsets of ω , define its *D-limit* $a = \lim_n^D a_n$ as $k \in a$ iff $\{n < \omega : k \in a_n\} \in D$. (2) If $\varphi_n : \omega \to \mathcal{P}(\omega)$ for $n < \omega$, $\varphi = \lim_n^D \varphi_n : \omega \to \mathcal{P}(\omega)$ is defined as $\varphi(i) = \lim_n^D \varphi_n(i)$.

Definition If ⟨a_n : n < ω⟩ is a sequence of subsets of ω, define its *D*-limit a = lim^D_n a_n as k ∈ a iff {n < ω : k ∈ a_n} ∈ D. (2) If φ_n : ω → P(ω) for n < ω, φ = lim^D_n φ_n : ω → P(ω) is defined as φ(i) = lim^D_n φ_n(i).

Fact

Note that, if there is an $m < \omega$ such that $wd(\varphi_n) \le m$ for all $n < \omega$, then its *D*-limit has also width $\le m$.

A sequence $\bar{p} = \langle p_n : n < \omega \rangle$ of conditions from \mathbb{E} is *uniform* if there are $s \in \omega^{<\omega}$ and an $m < \omega$ such that each $p_n = (s, \varphi_n)$ with $wd(\varphi_n) \le m$.

A sequence $\bar{p} = \langle p_n : n < \omega \rangle$ of conditions from \mathbb{E} is *uniform* if there are $s \in \omega^{<\omega}$ and an $m < \omega$ such that each $p_n = (s, \varphi_n)$ with $wd(\varphi_n) \leq m$. Here, we define $\lim_{n \to \infty} \bar{p} = \lim_{n \to \infty} p_n = (s, \lim_{n \to \infty} \varphi_n) \in \mathbb{E}$. A sequence $\bar{p} = \langle p_n : n < \omega \rangle$ of conditions from \mathbb{E} is *uniform* if there are $s \in \omega^{<\omega}$ and an $m < \omega$ such that each $p_n = (s, \varphi_n)$ with $wd(\varphi_n) \leq m$. Here, we define $\lim^D \bar{p} = \lim_n^D p_n = (s, \lim_n^D \varphi_n) \in \mathbb{E}$.

Theorem (Miller 1981 (revisited))

If $\bar{p} = \langle p_n : n < \omega \rangle$ is an uniform sequence in \mathbb{E} then $\lim^{D} \bar{p}$ forces that $\{n < \omega : p_n \in G\}$ is infinite.

A sequence $\bar{p} = \langle p_n : n < \omega \rangle$ of conditions from \mathbb{E} is *uniform* if there are $s \in \omega^{<\omega}$ and an $m < \omega$ such that each $p_n = (s, \varphi_n)$ with $wd(\varphi_n) \leq m$. Here, we define $\lim_{n \to \infty} \bar{p} = \lim_{n \to \infty} p_n = (s, \lim_{n \to \infty} \varphi_n) \in \mathbb{E}$.

Theorem (Miller 1981 (revisited))

If $\bar{p} = \langle p_n : n < \omega \rangle$ is an uniform sequence in \mathbb{E} then $\lim^D \bar{p}$ forces that $\{n < \omega : p_n \in \dot{G}\}$ is infinite. Moreover, there is an \mathbb{E} -name \dot{D}^* of an ultrafilter on ω containing D such that, for every uniform sequence \bar{p} in \mathbb{E} , $\lim^D \bar{p}$ forces

$$\{n<\omega:p_n\in\dot{G}\}\in\dot{D}^*.$$

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$.

3

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that

(1) $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$ where $\mathbb{P}'_{\alpha} \leq \mathbb{P}_{\alpha}$ has size $\leq \mu$.

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that

(1) $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$ where $\mathbb{P}'_{\alpha} \leq \mathbb{P}_{\alpha}$ has size $\leq \mu$.

(2) \mathbb{P} forces that any set of reals of size $< \mu$ is in $V^{\mathbb{P}'_{\alpha}}$ for some $\alpha < \delta$.

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that (1) $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$ where $\mathbb{P}'_{\alpha} < \mathbb{P}_{\alpha}$ has size $\leq \mu$. (2) \mathbb{P} forces that any set of reals of size $< \mu$ is in $V^{\mathbb{P}'_{\alpha}}$ for some $\alpha < \delta$. It is clear that \mathbb{P} forces $\operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \lambda$.

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that (1) $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$ where $\mathbb{P}'_{\alpha} < \mathbb{P}_{\alpha}$ has size $\leq \mu$. (2) \mathbb{P} forces that any set of reals of size $< \mu$ is in $V^{\mathbb{P}'_{\alpha}}$ for some $\alpha < \delta$. It is clear that \mathbb{P} forces $\operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \lambda$.

<u>Plan</u>: Construct such an iteration where we can prove a version of Miller's theorem.

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that (1) $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$ where $\mathbb{P}'_{\alpha} < \mathbb{P}_{\alpha}$ has size $\leq \mu$. (2) \mathbb{P} forces that any set of reals of size $< \mu$ is in $V^{\mathbb{P}'_{\alpha}}$ for some $\alpha < \delta$. It is clear that \mathbb{P} forces $\operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \lambda$.

<u>Plan</u>: Construct such an iteration where we can prove a version of Miller's theorem. For that, we should clarify in the context of \mathbb{P} what is

(i) a uniform countable sequence $\bar{p} = \langle p_n : n < \omega \rangle$ from \mathbb{P} ,

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that (1) $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$ where $\mathbb{P}'_{\alpha} < \mathbb{P}_{\alpha}$ has size $\leq \mu$. (2) \mathbb{P} forces that any set of reals of size $< \mu$ is in $V^{\mathbb{P}'_{\alpha}}$ for some $\alpha < \delta$. It is clear that \mathbb{P} forces $\operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \lambda$.

<u>Plan</u>: Construct such an iteration where we can prove a version of Miller's theorem. For that, we should clarify in the context of $\mathbb P$ what is

- (i) a uniform countable sequence $\bar{p} = \langle p_n : n < \omega \rangle$ from \mathbb{P} ,
- (ii) define some sort of limit for any such uniform sequence, and

くほと くほと くほと

Let $\aleph_1 < \mu < \lambda$ be cardinals such that μ is regular and $\lambda^{<\mu} = \lambda$. To force $\mathfrak{b} = \aleph_1 < \operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \lambda$, we plan to use a fsi $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \delta \rangle$ with $\delta = \lambda \mu$ so that (1) $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$ where $\mathbb{P}'_{\alpha} < \mathbb{P}_{\alpha}$ has size $\leq \mu$. (2) \mathbb{P} forces that any set of reals of size $< \mu$ is in $V^{\mathbb{P}'_{\alpha}}$ for some $\alpha < \delta$. It is clear that \mathbb{P} forces $\operatorname{non}(\mathcal{M}) = \mu < \operatorname{cov}(\mathcal{M}) = \mathfrak{c} = \lambda$.

<u>Plan</u>: Construct such an iteration where we can prove a version of Miller's theorem. For that, we should clarify in the context of $\mathbb P$ what is

- (i) a uniform countable sequence $\bar{p} = \langle p_n : n < \omega \rangle$ from \mathbb{P} ,
- (ii) define some sort of limit for any such uniform sequence, and
- (iii) prove that this limit forces that $\{n < \omega : p_n \in \dot{G}\}$ is infinite.

- 4 同 6 4 日 6 4 日 6

Attempt

Let's try to prove that some unbounded family from the ground model is preserved.

э

Let's try to prove that some unbounded family from the ground model is preserved. Assume $F \subseteq \omega^{\omega}$ uncountable such that, for every $g \in \omega^{\omega}$,

 $\{f \in F : f \leq^* g\}$ is countable.

Let's try to prove that some unbounded family from the ground model is preserved. Assume $F \subseteq \omega^{\omega}$ uncountable such that, for every $g \in \omega^{\omega}$,

 $\{f \in F : f \leq^* g\}$ is countable.

Assume that \mathbb{P} does not preserve this property for F, i.e., there is some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{g} of a member of ω^{ω} such that

 $p \Vdash \{ f \in F : f \leq^* \dot{g} \}$ is uncountable.

Let's try to prove that some unbounded family from the ground model is preserved. Assume $F \subseteq \omega^{\omega}$ uncountable such that, for every $g \in \omega^{\omega}$,

 $\{f \in F : f \leq^* g\}$ is countable.

Assume that \mathbb{P} does not preserve this property for F, i.e., there is some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{g} of a member of ω^{ω} such that

 $p \Vdash \{f \in F : f \leq^* \dot{g}\}$ is uncountable.

For each $\xi < \omega_1$, find $p_{\xi} \le p$ in \mathbb{P} , $f_{\xi} \in F$ and $m_{\xi} < \omega$ so that

Let's try to prove that some unbounded family from the ground model is preserved. Assume $F \subseteq \omega^{\omega}$ uncountable such that, for every $g \in \omega^{\omega}$,

$$\{f \in F : f \leq^* g\}$$
 is countable.

Assume that \mathbb{P} does not preserve this property for F, i.e., there is some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{g} of a member of ω^{ω} such that

$$p \Vdash \{f \in F : f \leq^* \dot{g}\}$$
 is uncountable.

For each $\xi < \omega_1$, find $p_{\xi} \le p$ in \mathbb{P} , $f_{\xi} \in F$ and $m_{\xi} < \omega$ so that (i) $p_{\xi} \Vdash f_{\xi} \le_{m_{\xi}} \dot{g}$, i.e., $\forall n \ge m_{\xi}(f_{\xi}(n) \le \dot{g}(n))$, and

Let's try to prove that some unbounded family from the ground model is preserved. Assume $F \subseteq \omega^{\omega}$ uncountable such that, for every $g \in \omega^{\omega}$,

$$\{f \in F : f \leq^* g\}$$
 is countable.

Assume that \mathbb{P} does not preserve this property for F, i.e., there is some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{g} of a member of ω^{ω} such that

$$p \Vdash \{f \in F : f \leq^* \dot{g}\}$$
 is uncountable.

For each $\xi < \omega_1$, find $p_{\xi} \le p$ in \mathbb{P} , $f_{\xi} \in F$ and $m_{\xi} < \omega$ so that (i) $p_{\xi} \Vdash f_{\xi} \le m_{\xi} \dot{g}$, i.e., $\forall n \ge m_{\xi}(f_{\xi}(n) \le \dot{g}(n))$, and (ii) $\xi \ne \eta$ implies $f_{\xi} \ne f_{\eta}$.

Let's try to prove that some unbounded family from the ground model is preserved. Assume $F \subseteq \omega^{\omega}$ uncountable such that, for every $g \in \omega^{\omega}$,

$$\{f \in F : f \leq^* g\}$$
 is countable.

Assume that \mathbb{P} does not preserve this property for F, i.e., there is some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{g} of a member of ω^{ω} such that

$$p \Vdash \{f \in F : f \leq^* \dot{g}\}$$
 is uncountable.

For each $\xi < \omega_1$, find $p_{\xi} \le p$ in \mathbb{P} , $f_{\xi} \in F$ and $m_{\xi} < \omega$ so that (i) $p_{\xi} \Vdash f_{\xi} \le m_{\xi} \dot{g}$, i.e., $\forall n \ge m_{\xi}(f_{\xi}(n) \le \dot{g}(n))$, and (ii) $\xi \ne \eta$ implies $f_{\xi} \ne f_{\eta}$. WLOG, every m_{ξ} are equal to a single m^*

Let's try to prove that some unbounded family from the ground model is preserved. Assume $F \subseteq \omega^{\omega}$ uncountable such that, for every $g \in \omega^{\omega}$,

$$\{f \in F : f \leq^* g\}$$
 is countable.

Assume that \mathbb{P} does not preserve this property for F, i.e., there is some $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{g} of a member of ω^{ω} such that

$$p \Vdash \{f \in F : f \leq^* \dot{g}\}$$
 is uncountable.

For each $\xi < \omega_1$, find $p_{\xi} \le p$ in \mathbb{P} , $f_{\xi} \in F$ and $m_{\xi} < \omega$ so that (i) $p_{\xi} \Vdash f_{\xi} \le_{m_{\xi}} \dot{g}$, i.e., $\forall n \ge m_{\xi}(f_{\xi}(n) \le \dot{g}(n))$, and (ii) $\xi \ne \eta$ implies $f_{\xi} \ne f_{\eta}$. WLOG, every m_{ξ} are equal to a single m^* and $\{p_{\xi} : \xi < \omega\}$ forms

WLOG, every m_{ξ} are equal to a single m^* and $\{p_{\xi} : \xi < \omega\}$ forms a uniform Δ -system.

Claim

There are $i^* \ge m^*$ and an increasing sequence $\langle \xi_n : n < \omega \rangle$ in ω_1 such that $\langle f_{\xi_n}(i^*) : n < \omega \rangle$ is increasing.

There are $i^* \ge m^*$ and an increasing sequence $\langle \xi_n : n < \omega \rangle$ in ω_1 such that $\langle f_{\xi_n}(i^*) : n < \omega \rangle$ is increasing.

<u>Point</u>: Find a $q \in \mathbb{P}$ that forces " $\dot{A} := \{n < \omega : p_{\xi_n} \in \dot{G}\}$ infinite" to yield a contradiction and conclude that F is preserved unbounded.

There are $i^* \ge m^*$ and an increasing sequence $\langle \xi_n : n < \omega \rangle$ in ω_1 such that $\langle f_{\xi_n}(i^*) : n < \omega \rangle$ is increasing.

<u>Point</u>: Find a $q \in \mathbb{P}$ that forces " $\dot{A} := \{n < \omega : p_{\xi_n} \in \dot{G}\}$ infinite" to yield a contradiction and conclude that F is preserved unbounded.

It seems likely that

(i) $\operatorname{supp}(q)$ is the root of the Δ -system and

There are $i^* \ge m^*$ and an increasing sequence $\langle \xi_n : n < \omega \rangle$ in ω_1 such that $\langle f_{\xi_n}(i^*) : n < \omega \rangle$ is increasing.

<u>Point</u>: Find a $q \in \mathbb{P}$ that forces " $\dot{A} := \{n < \omega : p_{\xi_n} \in \dot{G}\}$ infinite" to yield a contradiction and conclude that F is preserved unbounded.

It seems likely that

- (i) $\operatorname{supp}(q)$ is the root of the Δ -system and
- (ii) for $\alpha \in \text{supp}(q)$, $q(\alpha)$ is some ultrafilter limit of $\langle p_{\xi_n}(\alpha) : n < \omega \rangle$.

There are $i^* \ge m^*$ and an increasing sequence $\langle \xi_n : n < \omega \rangle$ in ω_1 such that $\langle f_{\xi_n}(i^*) : n < \omega \rangle$ is increasing.

<u>Point</u>: Find a $q \in \mathbb{P}$ that forces " $\dot{A} := \{n < \omega : p_{\xi_n} \in \dot{G}\}$ infinite" to yield a contradiction and conclude that F is preserved unbounded.

It seems likely that

(i) $\operatorname{supp}(q)$ is the root of the Δ -system and

(ii) for $\alpha \in \text{supp}(q)$, $q(\alpha)$ is some ultrafilter limit of $\langle p_{\xi_n}(\alpha) : n < \omega \rangle$. Moreover, if this ultrafilter is \dot{D}_{α} , we need that

$$\Vdash_{\mathbb{P}_{\alpha}} \dot{D}_{\alpha} \cap V^{\mathbb{P}'_{\alpha}} \in V^{\mathbb{P}'_{\alpha}}$$

to guarantee $\Vdash_{\mathbb{P}_{\alpha}} q(\alpha) \in \dot{\mathbb{Q}}_{\alpha}$.

Construction of chains of ultrafilters

A sequence $\bar{p} = \langle p_n : n < \omega \rangle$ from \mathbb{P} is *uniform* if it is a uniform Δ -system.

Construction of chains of ultrafilters

A sequence $\bar{p} = \langle p_n : n < \omega \rangle$ from \mathbb{P} is *uniform* if it is a uniform Δ -system.

Sadly, a single sequence $\langle \dot{D}_{\alpha} : \alpha \leq \delta \rangle$ of names of ultrafilters may not work for all the uniform sequences.

Sadly, a single sequence $\langle \dot{D}_{\alpha} : \alpha \leq \delta \rangle$ of names of ultrafilters may not work for all the uniform sequences.

The iteration, along with χ -many *increasing chains of ultrafilters*, are constructed simultaneously by recursion:

Sadly, a single sequence $\langle \dot{D}_{\alpha} : \alpha \leq \delta \rangle$ of names of ultrafilters may not work for all the uniform sequences.

The iteration, along with χ -many *increasing chains of ultrafilters*, are constructed simultaneously by recursion:

Successor step: Assume that \mathbb{P}_{α} along with the chain of ultrafilters $\langle \dot{D}_{\xi}^{\varepsilon}: \xi \leq \alpha \rangle$ for each $\varepsilon < \chi$, has been constructed.

Sadly, a single sequence $\langle \dot{D}_{\alpha} : \alpha \leq \delta \rangle$ of names of ultrafilters may not work for all the uniform sequences.

The iteration, along with χ -many *increasing chains of ultrafilters*, are constructed simultaneously by recursion:

Successor step: Assume that \mathbb{P}_{α} along with the chain of ultrafilters $\langle \dot{D}_{\xi}^{\varepsilon} : \xi \leq \alpha \rangle$ for each $\varepsilon < \chi$, has been constructed. Also fix \dot{F}_{α} a \mathbb{P}_{α} -name for a subset of ω^{ω} of size $< \mu$ (counting argument).

Sadly, a single sequence $\langle \dot{D}_{\alpha} : \alpha \leq \delta \rangle$ of names of ultrafilters may not work for all the uniform sequences.

The iteration, along with χ -many *increasing chains of ultrafilters*, are constructed simultaneously by recursion:

Successor step: Assume that \mathbb{P}_{α} along with the chain of ultrafilters $\langle \dot{D}_{\xi}^{\varepsilon} : \xi \leq \alpha \rangle$ for each $\varepsilon < \chi$, has been constructed. Also fix \dot{F}_{α} a \mathbb{P}_{α} -name for a subset of ω^{ω} of size $< \mu$ (counting argument). Then, there is some $\mathbb{P}'_{\alpha} < \mathbb{P}_{\alpha}$ of size $\leq \max\{\chi, \mu\}^{\aleph_0}$ so that \dot{F}_{α} is a \mathbb{P}'_{α} -name and there is a \mathbb{P}'_{α} -name for $\dot{D}_{\alpha}^{\varepsilon} \cap V^{\mathbb{P}'_{\alpha}}$.

Sadly, a single sequence $\langle \dot{D}_{\alpha} : \alpha \leq \delta \rangle$ of names of ultrafilters may not work for all the uniform sequences.

The iteration, along with χ -many *increasing chains of ultrafilters*, are constructed simultaneously by recursion:

Successor step: Assume that \mathbb{P}_{α} along with the chain of ultrafilters $\langle \dot{D}_{\xi}^{\varepsilon} : \xi \leq \alpha \rangle$ for each $\varepsilon < \chi$, has been constructed. Also fix \dot{F}_{α} a \mathbb{P}_{α} -name for a subset of ω^{ω} of size $< \mu$ (counting argument). Then, there is some $\mathbb{P}'_{\alpha} < \mathbb{P}_{\alpha}$ of size $\leq \max\{\chi, \mu\}^{\otimes_{0}}$ so that \dot{F}_{α} is a \mathbb{P}'_{α} -name and there is a \mathbb{P}'_{α} -name for $\dot{D}_{\alpha}^{\varepsilon} \cap V^{\mathbb{P}'_{\alpha}}$. So $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}'_{α} -name for $\mathbb{E}^{V^{\mathbb{P}'_{\alpha}}}$. $\dot{D}_{lpha+1}^{arepsilon}$ is constructed (as a \mathbb{P}_{lpha+1} -name) so that it extends $\dot{D}_{lpha}^{arepsilon}$ and

 $\dot{D}_{\alpha+1}^{\varepsilon}$ is constructed (as a $\mathbb{P}_{\alpha+1}$ -name) so that it extends $\dot{D}_{\alpha}^{\varepsilon}$ and if \bar{p} is a uniform sequence from $\mathbb{P}_{\alpha+1}$ whose limit can be calculated by the ε -th chain, then this limit forces

$$\{n < \omega : p_n \in \dot{G}_{\alpha+1}\} \in \dot{D}_{\alpha+1}^{\varepsilon}.$$

 $\dot{D}_{\alpha+1}^{\varepsilon}$ is constructed (as a $\mathbb{P}_{\alpha+1}$ -name) so that it extends $\dot{D}_{\alpha}^{\varepsilon}$ and if \bar{p} is a uniform sequence from $\mathbb{P}_{\alpha+1}$ whose limit can be calculated by the ε -th chain, then this limit forces

$$\{n < \omega : p_n \in \dot{G}_{\alpha+1}\} \in \dot{D}_{\alpha+1}^{\varepsilon}.$$

Limit step: \mathbb{P}_{α} is just the direct limit, but D_{α}^{ε} should be constructed so that, for any uniform sequence \bar{p} from \mathbb{P}_{α} whose limit can be calculated by the ε -th chain, its limit forces

$$\{n < \omega : p_n \in \dot{G}_{\alpha}\} \in \dot{D}_{\alpha}^{\varepsilon}.$$

Fact

A uniform sequence \bar{p} defines a countable partial function $c^{\bar{p}} = (c_0^{\bar{p}}, c_1^{\bar{p}})$ from δ into $\omega^{<\omega} \times \omega$ with $\operatorname{dom} c^{\bar{p}} = \bigcup_{n < \omega} \operatorname{supp}(p_n)$ such that, for each $n < \omega$ and $\alpha \in \operatorname{supp}(p_n)$, $p_n(\alpha)$ is of the form $(c_0^{\bar{p}}(\alpha), \dot{\varphi})$ where $\dot{\varphi}$ is a \mathbb{P}'_{α} -name of a slalom of width $c_1^{\bar{p}}(\alpha)$.

Technicality

For each $h: \delta \to \omega^{<\omega} \times \omega$, it can be found a single chain of ultrafilters such that it calculates limits for any uniform sequence \bar{p} with $c^{\bar{p}} \subseteq h$

Technicality

For each $h: \delta \to \omega^{<\omega} \times \omega$, it can be found a single chain of ultrafilters such that it calculates limits for any uniform sequence \bar{p} with $c^{\bar{p}} \subseteq h$

Theorem (Engelking and Karłowicz 1965)

Assume CH and $\delta < (2^{\aleph_1})^+$. Then, there is a set $\{h_{\varepsilon} : \epsilon < \omega_1\}$ of (total) functions from δ into ω_1 such that every countable partial function from δ to ω_1 is contained in some h_{ϵ} .

Technicality

For each $h: \delta \to \omega^{<\omega} \times \omega$, it can be found a single chain of ultrafilters such that it calculates limits for any uniform sequence \bar{p} with $c^{\bar{p}} \subseteq h$

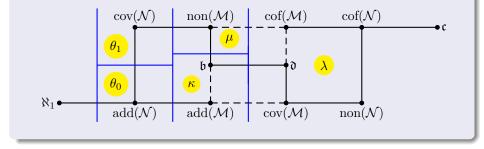
Theorem (Engelking and Karłowicz 1965)

Assume CH and $\delta < (2^{\aleph_1})^+$. Then, there is a set $\{h_{\varepsilon} : \epsilon < \omega_1\}$ of (total) functions from δ into ω_1 such that every countable partial function from δ to ω_1 is contained in some h_{ϵ} .

So, under CH, if $\lambda \leq 2^{\aleph_1}$ and $\mu^{\aleph_0} = \mu$ then we only need \aleph_1 -many chains of ultrafilters.

Theorem (Goldstern and M. and Shelah)

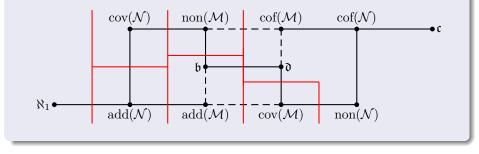
Let $\theta_0 \leq \theta_1 \leq \kappa = \kappa^{\aleph_0} \leq \mu = \mu^{\aleph_0}$ be uncountable regular cardinals, $\mu < \lambda = \lambda^{<\mu} \leq 2^{\kappa}$ and assume $\mathfrak{b} = \mathfrak{d} = \kappa$. Then, there is a ccc poset forcing



- 4 同 6 4 日 6 4 日 6

Open question

Is it consistent that $\mathfrak{b} < \operatorname{non}(\mathcal{M}) < \operatorname{cov}(\mathcal{M}) < \mathfrak{c}?$



э

프 > - 4 프