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Outline of Tutorial

Day 1 1 Introduction to topological Ramsey spaces
2 Classes of new topological Ramsey spaces which are dense in σ-closed

forcings yielding ultrafilters with complete combinatorics

Day 2 1 Canonical Ramsey theory for equivalence relations on fronts
2 Applications to exact Tukey and Rudin-Keisler structures

Day 3 1 Topological Ramsey spaces of strong trees
2 Applications to finding finite Ramsey degrees for universal relational

structures, including the universal triangle-free graph

National Science Foundation Grants DMS-1301665 and DMS-1600781 and
Simons Foundation Grant 245286 sponsored much of Dobrinen’s research in this
tutuorial.
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Day 1 Overview

1 Introduction to infinite dimensional Ramsey theory

2 The Ellentuck space

3 Abstract Topological Ramsey Spaces

4 Connections with forcing and ultrafilters

5 New topological Ramsey spaces dense inside σ-closed forcings which
add ultrafilters satisfying weak partition properties

6 A new Ramsey theorem motivated by this study
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Ramsey’s Theorem and Higher Dimensional Versions

Thm. (Ramsey) Given n, l ≥ 1 and a coloring c : [ω]n → l , there is an
infinite set M ⊆ ω such that c is monochromatic on [M]n.

Ramsey’s Theorem can be extended to clopen sets on the Baire space.

Def. A set F ⊆ [ω]<ω is Nash-Williams if or a, b ∈ F , a 6< b.

Thm. (Nash-Williams) Every Nash-Williams set F ⊆ [ω]<ω is Ramsey:
Given a coloring c on a front F into 2 colors, there is an M ∈ [ω]ω such
that c is monochromatic on F|M := {a ∈ F : a ⊆ M}.
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Extensions of Ramsey’s Theorem to higher dimensions

The Nash-Williams Theorem was later extended by Galvin and Prikry to
all metrically Borel subsets of the Baire space.

Silver extended it to all metrically analytic subsets of the Baire space.

The optimal extension of Ramsey’s Theorem to infinite dimensions is
Ellentuck’s Theorem.

This theorem uses a topology on the Baire space which refines the metric
topology.
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Ellentuck Space ([ω]ω,⊆, r)

Basis for topology: [a,X ] = {Y ∈ [ω]ω : a < Y ⊆ X}.
This is a refinement of the metric topology on the Baire space.

Def. X ⊆ [ω]ω is Ramsey iff for each [a,X ], there is a < Y ⊆ X such
that either [a,Y ] ⊆ X or [a,Y ] ∩ X = ∅.

Thm. (Ellentuck) Every X ⊆ [ω]ω with the property of Baire is
Ramsey, and every meager set is Ramsey null.
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Connection with Mathias Forcing

Mathias forcing M has conditions 〈a,X 〉, where a ∈ [ω]<ω, X ∈ [ω]ω,
and max(a) < min(X ).

〈b,Y 〉 ≤ 〈a,X 〉 iff b w a, Y ⊆ X , and b \ a ⊆ X .

Mathias forcing is equivalent to forcing using the basic open sets in the
Ellentuck space, ordered by ⊆.
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Connections with Forcing and Ultrafilters

Def. An ultrafilter U on ω is Ramsey if given any coloring c : [ω]n → l ,
there is a U ∈ U which is homogenous for c.

P(ω)/fin, or equivalently, ([ω]ω,⊆∗), forces a Ramsey ultrafilter.

Ramsey ultrafilters have complete combinatorics. One way to state
this is that if there is a supercompact cardinal in V , then any Ramsey
ultrafilter in V is generic for the forcing ([ω]ω,⊆∗) over the Solovay
model L(R).

For an ultrafilter U , let MU denote Mathias forcing where the tails are
members of U .

M is forcing equivalent to P(ω)/Fin ∗MU̇ , where U is the Ramsey
ultrafilter forced by P(ω)/Fin.
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Key properties from the Ellentuck space can be abstracted to give a
general notion of a topological Ramsey space.
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Abstract Topological Ramsey Spaces (R,≤, r)

R is a set. ≤ is quasi-order on R.

For each n, rn(·) := r(n, ·) is a restriction map on domain R giving the
n-th approximation to X .

ARn = {rn(X ) : X ∈ R} AR =
⋃

n<ωARn.

For a ∈ AR, Y ∈ R, a < Y iff rn(Y ) = a for some n.

Basic open sets: [a,X ] = {Y ∈ R : a < Y ≤ X}.

The topology on R generated by the basic open sets is a refinement of
the ‘metric topology’ on

∏
n<ωARn.
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The Axioms A.1 - A.4

A.1 (Sequencing)
1 r0(A) = ∅ for all A ∈ R.

2 A 6= B implies rn(A) 6= rn(B) for some n.

3 rn(A) = rm(B) implies n = m and rk(A) = rk(B) for all k < n.

A.2 (Finitization) There is a quasi-ordering ≤fin on AR such that

1 {a ∈ AR : a ≤fin b} is finite for all b ∈ AR,

2 A ≤ B iff (∀n)(∃m) rn(A) ≤fin rm(B),

3 ∀a, b, c ∈ AR [a < b ∧ b ≤fin c → ∃d < c a ≤fin d ].

depthB(a) is the least n (if it exists) such that a ≤fin rn(B).
If depthB(a) = n, then [depthB(a),B] denotes [rn(B),B].
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A.3 (Amalgamation)
1 If depthB(a) <∞ then [a,A] 6= ∅ for all A ∈ [depthB(a),B].

2 A ≤ B and [a,A] 6= ∅ imply that there is A′ ∈ [depthB(a),B] such
that ∅ 6= [a,A′] ⊆ [a,A].

For a ∈ AR, |a| denotes the k such that a ∈ ARk .

If n > |a|, then rn[a,A] = {rn(X ) : X ∈ [a,A]}.

A.4 (Pigeonhole) Given B ∈ R and a ∈ AR with depthB(a) <∞, then
for any O ⊆ r|a|+1[a,B], there is A ∈ [depthB(a),B] such that
r|a|+1[a,A] ⊆ O or r|a|+1[a,A] ⊆ Oc .

Dobrinen Ramsey theory in forcing University of Denver 12 / 44



A.3 (Amalgamation)
1 If depthB(a) <∞ then [a,A] 6= ∅ for all A ∈ [depthB(a),B].

2 A ≤ B and [a,A] 6= ∅ imply that there is A′ ∈ [depthB(a),B] such
that ∅ 6= [a,A′] ⊆ [a,A].

For a ∈ AR, |a| denotes the k such that a ∈ ARk .

If n > |a|, then rn[a,A] = {rn(X ) : X ∈ [a,A]}.

A.4 (Pigeonhole) Given B ∈ R and a ∈ AR with depthB(a) <∞, then
for any O ⊆ r|a|+1[a,B], there is A ∈ [depthB(a),B] such that
r|a|+1[a,A] ⊆ O or r|a|+1[a,A] ⊆ Oc .

Dobrinen Ramsey theory in forcing University of Denver 12 / 44



A.3 (Amalgamation)
1 If depthB(a) <∞ then [a,A] 6= ∅ for all A ∈ [depthB(a),B].

2 A ≤ B and [a,A] 6= ∅ imply that there is A′ ∈ [depthB(a),B] such
that ∅ 6= [a,A′] ⊆ [a,A].

For a ∈ AR, |a| denotes the k such that a ∈ ARk .

If n > |a|, then rn[a,A] = {rn(X ) : X ∈ [a,A]}.

A.4 (Pigeonhole) Given B ∈ R and a ∈ AR with depthB(a) <∞, then
for any O ⊆ r|a|+1[a,B], there is A ∈ [depthB(a),B] such that
r|a|+1[a,A] ⊆ O or r|a|+1[a,A] ⊆ Oc .

Dobrinen Ramsey theory in forcing University of Denver 12 / 44



Abstract Ellentuck Theorem

Def. X ⊆ R is Ramsey iff for each ∅ 6= [a,A], there is a B ∈ [a,A] such
that either [a,B] ⊆ X or [a,B] ∩ X = ∅.

Def. (Todorcevic) A triple (R,≤, r) is a topological Ramsey space if
every subset of R with the Baire property is Ramsey, and if every
meager subset of R is Ramsey null.

Building on prior work of Carlson and Simpson, Todorcevic proved an
abstract version of Ellentuck’s Theorem.

Abstract Ellentuck Thm. (Todorcevic) If (R,≤, r) satisfies Axioms
A.1 - A.4 and R is closed (in ARN), then (R,≤, r) is a topological
Ramsey space.
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Topological Ramsey Spaces are useful for

Finding exact Tukey and Rudin-Keisler structures in βω.

Proving complete combinatorics for ultrafilters satisfying some weak
partition properties, and for some other structures.

Proving finite Ramsey degrees for universal relational structures.

Showing certain ultrafilters are preserved by side-by-side Sacks forcings.

Solving problems in Banach spaces.

Streamlining proofs and creating general frameworks for certain classes of
structures and results.

Motivating new Ramsey theorems.

Dobrinen Ramsey theory in forcing University of Denver 14 / 44



Topological Ramsey Spaces are useful for

Finding exact Tukey and Rudin-Keisler structures in βω.

Proving complete combinatorics for ultrafilters satisfying some weak
partition properties, and for some other structures.

Proving finite Ramsey degrees for universal relational structures.

Showing certain ultrafilters are preserved by side-by-side Sacks forcings.

Solving problems in Banach spaces.

Streamlining proofs and creating general frameworks for certain classes of
structures and results.

Motivating new Ramsey theorems.

Dobrinen Ramsey theory in forcing University of Denver 14 / 44



Topological Ramsey Spaces are useful for

Finding exact Tukey and Rudin-Keisler structures in βω.

Proving complete combinatorics for ultrafilters satisfying some weak
partition properties, and for some other structures.

Proving finite Ramsey degrees for universal relational structures.

Showing certain ultrafilters are preserved by side-by-side Sacks forcings.

Solving problems in Banach spaces.

Streamlining proofs and creating general frameworks for certain classes of
structures and results.

Motivating new Ramsey theorems.

Dobrinen Ramsey theory in forcing University of Denver 14 / 44



Topological Ramsey Spaces are useful for

Finding exact Tukey and Rudin-Keisler structures in βω.

Proving complete combinatorics for ultrafilters satisfying some weak
partition properties, and for some other structures.

Proving finite Ramsey degrees for universal relational structures.

Showing certain ultrafilters are preserved by side-by-side Sacks forcings.

Solving problems in Banach spaces.

Streamlining proofs and creating general frameworks for certain classes of
structures and results.

Motivating new Ramsey theorems.

Dobrinen Ramsey theory in forcing University of Denver 14 / 44



Topological Ramsey Spaces are useful for

Finding exact Tukey and Rudin-Keisler structures in βω.

Proving complete combinatorics for ultrafilters satisfying some weak
partition properties, and for some other structures.

Proving finite Ramsey degrees for universal relational structures.

Showing certain ultrafilters are preserved by side-by-side Sacks forcings.

Solving problems in Banach spaces.

Streamlining proofs and creating general frameworks for certain classes of
structures and results.

Motivating new Ramsey theorems.

Dobrinen Ramsey theory in forcing University of Denver 14 / 44



Topological Ramsey Spaces are useful for

Finding exact Tukey and Rudin-Keisler structures in βω.

Proving complete combinatorics for ultrafilters satisfying some weak
partition properties, and for some other structures.

Proving finite Ramsey degrees for universal relational structures.

Showing certain ultrafilters are preserved by side-by-side Sacks forcings.

Solving problems in Banach spaces.

Streamlining proofs and creating general frameworks for certain classes of
structures and results.

Motivating new Ramsey theorems.

Dobrinen Ramsey theory in forcing University of Denver 14 / 44



Topological Ramsey Spaces are useful for

Finding exact Tukey and Rudin-Keisler structures in βω.

Proving complete combinatorics for ultrafilters satisfying some weak
partition properties, and for some other structures.

Proving finite Ramsey degrees for universal relational structures.

Showing certain ultrafilters are preserved by side-by-side Sacks forcings.

Solving problems in Banach spaces.

Streamlining proofs and creating general frameworks for certain classes of
structures and results.

Motivating new Ramsey theorems.

Dobrinen Ramsey theory in forcing University of Denver 14 / 44



Standard Examples of Topological Ramsey Spaces

1 Ellentuck space

2 Carlson-Simpson space of equivalence relations on ω with infinitely
many equivalence classes (dual Ramsey)

3 Pröml-Voigt spaces of parameter words and ascending parameter
words

4 Milliken space of block sequences FIN
[∞]
k

5 Carlson’s space of infinite dimensional vector spaces FN where F is a
finite field.

D. and Mijares have an example schema which encompasses (2) - (5) as
special cases.

All of these spaces (except the Ellentuck space) have ≤ essentially given
by a composition operator and are surjective spaces.
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Inner Topological Ramsey Spaces

Several classes of σ-closed forcings adding new ultrafilters have been
shown to contain dense subsets which form topological Ramsey spaces.

Like the Ellentuck space, the partial orderings ≤ are given by
structure-preserving injections.

The motivation for this was to find exact Tukey and Rudin-Keisler
structures of ultrafilters. We will cover that tomorrow.

We will survey several of these topological Ramsey spaces and how they
were constructed from known partial orderings. First, a word about
ultrafilters forced by topological Ramsey spaces.
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Ultrafilters forced by topological Ramsey spaces

Mijares showed that every topological Ramsey space has an induced
σ-closed partial ordering of almost reduction ≤∗, similarly to ⊆∗ on the
Ellentuck space.

(R,≤∗) forces a maximal generic filter on R.

The generic ultrafilter usually induces an ultrafilter on the base set AR1.
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Selective Coideals and Complete Combinatorics

Given a topological Ramsey space (R,≤, r), a coideal U ⊆ R is selective
if for each A ∈ U and any collection (Aa)a∈AR|A of members of U � A,
there is a U ∈ U which diagonalizes (Aa)a∈AR|A.

Forcing with (R,≤∗) adds a selective ultrafilter or coideal U on R.

Thm. (Mijares) each (R,≤) is forcing equivalent to forcing first with
(R,≤∗) to obtain a generic ultrafilter U , and then forcing with the
σ-closed localized version (RU ,≤) where the tails are in U .

Thm. (Di Prisco/Mijares/Nieto) In the presence of a supercompact
cardinal, every selective coideal U ⊆ R is generic for (R,≤∗) over L(R).
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Laflamme’s forcing to add a weakly Ramsey ultrafilter

P1 = ([ω]ω,≤1).

For X ,Y ∈ [ω]ω, enumerating them in increasing

order and in blocks of increasing size as

X = 〈x1
1 , x

2
1 , x

2
2 , x

3
1 , x

3
2 , x

3
3 , . . .〉 and Y = 〈y1

1 , y
2
1 , y

2
2 , y

3
1 , y

3
2 , y

3
3 , . . .〉,

then Y ≤1 X iff ∀m ∃n such that {ym
1 , . . . , y

m
m } ⊆ {xn

1 , . . . x
n
n}.

Note: Y ≤1 X =⇒ Y ⊆ X .

Y ≤∗1 X iff ∀∞n, the n-th block of Y is contained in some block of X .

So (P1,≤∗1) is like ([ω]ω,⊆∗) except the partial ordering is more restrictive.

Dobrinen Ramsey theory in forcing University of Denver 19 / 44



Laflamme’s forcing to add a weakly Ramsey ultrafilter

P1 = ([ω]ω,≤1). For X ,Y ∈ [ω]ω, enumerating them in increasing

order and in blocks of increasing size as

X = 〈x1
1 , x

2
1 , x

2
2 , x

3
1 , x

3
2 , x

3
3 , . . .〉 and Y = 〈y1

1 , y
2
1 , y

2
2 , y

3
1 , y

3
2 , y

3
3 , . . .〉,

then Y ≤1 X iff ∀m ∃n such that {ym
1 , . . . , y

m
m } ⊆ {xn

1 , . . . x
n
n}.

Note: Y ≤1 X =⇒ Y ⊆ X .

Y ≤∗1 X iff ∀∞n, the n-th block of Y is contained in some block of X .

So (P1,≤∗1) is like ([ω]ω,⊆∗) except the partial ordering is more restrictive.

Dobrinen Ramsey theory in forcing University of Denver 19 / 44



Laflamme’s forcing to add a weakly Ramsey ultrafilter

P1 = ([ω]ω,≤1). For X ,Y ∈ [ω]ω, enumerating them in increasing

order and in blocks of increasing size as

X = 〈x1
1 , x

2
1 , x

2
2 , x

3
1 , x

3
2 , x

3
3 , . . .〉 and Y = 〈y1

1 , y
2
1 , y

2
2 , y

3
1 , y

3
2 , y

3
3 , . . .〉,

then Y ≤1 X iff ∀m ∃n such that {ym
1 , . . . , y

m
m } ⊆ {xn

1 , . . . x
n
n}.

Note: Y ≤1 X =⇒ Y ⊆ X .

Y ≤∗1 X iff ∀∞n, the n-th block of Y is contained in some block of X .

So (P1,≤∗1) is like ([ω]ω,⊆∗) except the partial ordering is more restrictive.

Dobrinen Ramsey theory in forcing University of Denver 19 / 44



Laflamme’s forcing to add a weakly Ramsey ultrafilter

P1 = ([ω]ω,≤1). For X ,Y ∈ [ω]ω, enumerating them in increasing

order and in blocks of increasing size as

X = 〈x1
1 , x

2
1 , x

2
2 , x

3
1 , x

3
2 , x

3
3 , . . .〉 and Y = 〈y1

1 , y
2
1 , y

2
2 , y

3
1 , y

3
2 , y

3
3 , . . .〉,

then Y ≤1 X iff ∀m ∃n such that {ym
1 , . . . , y

m
m } ⊆ {xn

1 , . . . x
n
n}.

Note: Y ≤1 X =⇒ Y ⊆ X .

Y ≤∗1 X iff ∀∞n, the n-th block of Y is contained in some block of X .

So (P1,≤∗1) is like ([ω]ω,⊆∗) except the partial ordering is more restrictive.

Dobrinen Ramsey theory in forcing University of Denver 19 / 44



Laflamme’s forcing to add a weakly Ramsey ultrafilter

P1 = ([ω]ω,≤1). For X ,Y ∈ [ω]ω, enumerating them in increasing

order and in blocks of increasing size as

X = 〈x1
1 , x

2
1 , x

2
2 , x

3
1 , x

3
2 , x

3
3 , . . .〉 and Y = 〈y1

1 , y
2
1 , y

2
2 , y

3
1 , y

3
2 , y

3
3 , . . .〉,

then Y ≤1 X iff ∀m ∃n such that {ym
1 , . . . , y

m
m } ⊆ {xn

1 , . . . x
n
n}.

Note: Y ≤1 X =⇒ Y ⊆ X .

Y ≤∗1 X iff ∀∞n, the n-th block of Y is contained in some block of X .

So (P1,≤∗1) is like ([ω]ω,⊆∗) except the partial ordering is more restrictive.

Dobrinen Ramsey theory in forcing University of Denver 19 / 44



Thm. (Laflamme) (P1,≤∗1) forces a weakly Ramsey ultrafilter.

U is weakly Ramsey if for each finitary coloring c of [ω]2, there is a
U ∈ U for which c takes on at most two colors on [U]2.

U → (U)2k,2.

If κ is a Mahlo cardinal and G is Levy(κ)-generic over V , then any
ultrafilter U on ω in V [G ] which is not Ramsey but is rapid and
satisfies RP(k) for all k is generic over HOD(R)V [G ] (the original form
of ‘complete combinatorics’).
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Laflamme’s forcing (P1,≤1). Example: Y ≤1 X

0 1 3 4 5 6 8 10 11 12 13 15 17 19 20 24 27 29 31 37 42

Figure: X ∈ [ω]ω

3 13 15 17 19 20 27 29 31 37

Figure: Y ∈ [ω]ω & Y ≤1 X
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The topological Ramsey space dense in (P1,≤1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5

Figure: The maximum member of R1.
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The topological Ramsey space dense in (P1,≤1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5

2 3 5 6 8 9 16 17 18 19

1 2 3 5

2 6 9 16 17 19

1 3 5

X

Y

Figure: Two members X and Y of R1 with X ≤ Y .
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A subtree not in R1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5

2 15 16 18 19 20

1 5

Z

Figure: Z 6∈ R1
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Thm. (D./Todorcevic) (R1,≤) is a topological Ramsey space and is
dense below any member of P1.

The generic filter forced by (R1,≤∗) induces an ultrafilter on AR1.
Call it U1. U1 is weakly Ramsey: U1 → (U1)2k,2.

Prop. For each n ≥ 2, U1 → (U1)nk,2n−1 .

This is stated in [Laflamme 89]. An elegant proof using topological
Ramsey space methods is given in Navarro Flores’ Masters Thesis.

Exercise. Prove A.4 for the space R1.

Ramsey spaces Rα dense inside Laflamme’s forcings Pα, α < ω1, were
also constructed in [D./Todorcevic 15].
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The n-square forcing of Blass

A subset of ω × ω of the form s × t is an n-square if |s| = |t| = n.

X ⊆ ω× ω is in Pn−square iff for each n < ω, X contains and n× n-square.
For X ,Y ∈ Pn−square, Y ≤ X iff Y ⊆ X .

Thm. (Blass) Pn−square forces a p-point with two Rudin-Keisler
incomparable predecessors.

Def. U is a p-point if each sequence X0 ⊇∗ X1 ⊇∗ . . . of members of U
has a pseudointersection U ∈ U ; i.e. U ⊆∗ Xi for all i .
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The Ramsey space H2 dense in the n-square forcing

0
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Figure: The maximum member of H2.
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The Ramsey space H2 dense in the n-square forcing
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Figure: A member of X in H2.
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The Ramsey space H2 dense in the n-square forcing
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Figure: Two members Y and X of H2 with Y ≤ X
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The Hypercube topological Ramsey spaces

Thm. (D./Trujillo) (H2,≤, r) is a topological Ramsey space.

Let V2 denote the ultrafilter forced by (H2,≤). Then V2 → (V2)2k,6.

Rem 1. H2 behaves like a product of two copies of R1; each copy of
R1 is recovered by projection maps.

Rem 2. Higher dimensional hypercube spaces were constructed in
[D./Mijares/Trujillo] including a space where the dimension of the n-th
block is n + 1.
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Arrow Ultrafilters of Baumgartner and Taylor

Def. An ultrafilter U is k-arrow if U → (U , k)2.

Thm. (Baumgartner/Taylor) There are forcings which construct
ultrafilters Wk+1 which are k-arrow but not (k + 1)-arrow ultrafilters,
for all k ≥ 2.

Thm. (D./Mijares/Trujillo) For each k ≥ 2, there is a topological
Ramsey space Ak+1 which is dense in the Baumgartner-Taylor partial
order forcing a k-arrow, not (k + 1)-arrow ultrafilter.

Exercise. Prove A.4 for A3.
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The topological Ramsey space A3

Let K3 be the Fräısse class of finite ordered triangle-free graphs.

Block structure for A3

· · ·
Block 0 1 2 3

Figure: A member X of A3

block n + 2→ (block n + 1)block n
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The topological Ramsey space A3

Let K3 be the Fräısse class of finite ordered triangle-free graphs.

· · ·
Block 0 1 2 3

Block structure for A3

Figure: Example: Two members Y and X of A3 with Y ≤ X

block n + 2→ (block n + 1)block n
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Ramsey degrees for these forced ultrafilters (in [DMT])

The space (A3,≤∗) forces a 2-arrow but not 3-arrow ultrafilter, W3, the
same one as Baumgarter and Taylor.

The Ramsey degrees are

W3 → (W3)2k,3

W3 → (W3)3k,12

W3 → (W3)4k,35 (1)

More generally, any product K of finitely many Fräıssé classes of finite
ordered relational structures with the Ramsey property can be used to
compose the block structures of members of a topological Ramsey space.

The topological Ramsey space structure allows one to find formulas for the
numbers d such that UK → (UK)mk,d , for such forced ultrafilters.
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Topological Ramsey spaces dense in creature forcings

Observation (Todorcevic). There are strong connections between
creature forcings and topological Ramsey spaces deserving of a
systematic study.

Question. Which creature forcings are essentially topological Ramsey
spaces?

In [D. TopApp 16], we proved that three of the examples of pure
candidates for creature forcings given in [Roslanowski/Shelah 13]
contain dense subsets which are topological Ramsey spaces.
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Let H be any function with dom(H) = ω such that H(n) is a finite
non-empty set for each n < ω.

FH =
⋃

u∈FIN

∏
n∈u

H(n).

pure candidates are certain infinite sequences t̄ of creatures (finite
structures). pos(t̄) is an infinite subset of FH induced by t̄.

Thm. (Ros lanowski/Shelah) (CH) There is an ultrafilter U on base set
FH generated by {pos(t̄α ) : α < ω1} for a decreasing sequence of pure
candidates 〈t̄α : α < ω1〉 satisfying the partition theorem:

For any t̄ such that pos(t̄ ) ∈ U and any partition of pos(t̄ ) into finitely
many pieces, there is a pure candidate s̄ ≤ t̄ such that pos(s̄) is
contained in one piece of the partition and pos(s̄) ∈ U .
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Remark 1. This generalizes the construction of a stable-ordered union
ultrafilter on FIN using Hindman’s Theorem.

Remark 2. The proofs in [RS] use the Galvin-Glazer method extended
to certain classes of creature forcings.
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Thm. (D.) Three examples of sets of pure candidates in [RS] contain
dense subsets forming topological Ramsey spaces.

For two of these spaces, the pigeonhole principles rely on the following
product tree Ramsey theorem.
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New Product Tree Ramsey Theorem

Let
∏

j∈n+1,p

Kj = K0 × · · · × Kp−1 × [Kp]k × Kp+1 × · · · × Kn.

Thm. (D.) Given k ≥ 1, a sequence of positive integers (m0,m1, . . . ),
sets Kj , j < ω such that |Kj | ≥ j + 1, and a coloring

c :
⋃
n<ω

⋃
p≤n

∏
j∈n+1,p

Kj → 2,

there are infinite sets L,N ⊆ ω such that l0 ≤ n0 < l1 ≤ n1 < . . . , and
there are Hj ⊆ Kj , j < ω, such that |Hli | = mi for each i < ω, |Hj | = 1
for each j ∈ ω \ L, and c is constant on⋃

n∈N

⋃
l∈L∩(n+1)

∏
j∈n+1,l

Hj .
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The proof built on the following Product Tree Theorem.

Thm. (Di Prisco/Llopis/Todorcevic) There is an R : (N+)<ω → N+

such that for every infinite sequence (mj)j<ω of positive integers and for
every coloring

c :
⋃
n<ω

∏
j≤n

R(m0, . . . ,mj)→ 2,

there exist Hj ⊆ R(m0, . . . ,mj), |Hj | = mj , for j < ω, such that c is
constant on the product

∏
j≤n Hj for infinitely many n < ω.

Remark. The difference is that we need sets of size k to be able to
move up and down indices of the product.
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Conclusion for Day 1

Topological Ramsey spaces provide a unifying framework for many
ultrafilters satisfying partition properties and, moreover, yield ultrafilters
with complete combinatorics. They also motivate new Ramsey theorems.

With further work (tomorrow), we obtain:

1 New canonical equivalence relations on fronts and barriers.

2 Exact Rudin-Keisler and Tukey structures as well as the structure of
the Rudin-Keisler classes inside the Tukey types.
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