Maximal trees

Jörg Brendle

Kobe University
RIMS Kyoto, November 28, 2016
(\mathcal{T}, \leq) is tree:

- \exists largest element $\mathbf{1}$
- $\forall t \in \mathcal{T}: \operatorname{pred}_{\mathcal{T}}(t)=\{s \in \mathcal{T}: s \geq t\}$ is well-ordered by \geq (predecessors)
(\mathcal{T}, \leq) is tree:
- \exists largest element $\mathbf{1}$
- $\forall t \in \mathcal{T}: \operatorname{pred}_{\mathcal{T}}(t)=\{s \in \mathcal{T}: s \geq t\}$ is well-ordered by \geq (predecessors)
levels: $\operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{t \in \mathcal{T}: \operatorname{pred}_{\mathcal{T}}(t)\right.$ has order type $\left.\alpha\right\}$
height: $\operatorname{ht}(\mathcal{T})=\min \left\{\alpha: \operatorname{Lev}_{\alpha}(\mathcal{T})=\emptyset\right\}$
width: $\quad \sup \left\{\left|\operatorname{Lev}_{\alpha}(\mathcal{T})\right|: \alpha<\operatorname{ht}(\mathcal{T})\right\}$
(\mathcal{T}, \leq) is tree:
- \exists largest element $\mathbf{1}$
- $\forall t \in \mathcal{T}: \operatorname{pred}_{\mathcal{T}}(t)=\{s \in \mathcal{T}: s \geq t\}$ is well-ordered by \geq (predecessors)
levels: $\operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{t \in \mathcal{T}: \operatorname{pred}_{\mathcal{T}}(t)\right.$ has order type $\left.\alpha\right\}$
height: $\operatorname{ht}(\mathcal{T})=\min \left\{\alpha: \operatorname{Lev}_{\alpha}(\mathcal{T})=\emptyset\right\}$
width: $\sup \left\{\left|\operatorname{Lev}_{\alpha}(\mathcal{T})\right|: \alpha<\operatorname{ht}(\mathcal{T})\right\}$
Let (\mathbb{P}, \leq) p.o. with largest element $\mathbf{1}$
$\mathcal{T} \subseteq \mathbb{P}$ is subtree of $(\mathbb{P}, \leq): \mathbf{1} \in \mathcal{T}$ and $(\mathcal{T}, \leq \upharpoonright(\mathcal{T} \times \mathcal{T}))$ is tree
(\mathcal{T}, \leq) is tree:
- \exists largest element $\mathbf{1}$
- $\forall t \in \mathcal{T}: \operatorname{pred}_{\mathcal{T}}(t)=\{s \in \mathcal{T}: s \geq t\}$ is well-ordered by \geq (predecessors)
levels: $\operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{t \in \mathcal{T}: \operatorname{pred}_{\mathcal{T}}(t)\right.$ has order type $\left.\alpha\right\}$
height: $\operatorname{ht}(\mathcal{T})=\min \left\{\alpha: \operatorname{Lev}_{\alpha}(\mathcal{T})=\emptyset\right\}$
width: $\quad \sup \left\{\left|\operatorname{Lev}_{\alpha}(\mathcal{T})\right|: \alpha<\operatorname{ht}(\mathcal{T})\right\}$
Let (\mathbb{P}, \leq) p.o. with largest element $\mathbf{1}$ $\mathcal{T} \subseteq \mathbb{P}$ is subtree of $(\mathbb{P}, \leq): \mathbf{1} \in \mathcal{T}$ and $(\mathcal{T}, \leq \upharpoonright(\mathcal{T} \times \mathcal{T}))$ is tree

Note: incomparable (equivalently, incompatible) elements of \mathcal{T} are not necessarily incompatible in \mathbb{P}.

Maximal trees

Trees ordered by end-extension:
$\mathcal{S} \leq \mathcal{T}: \mathcal{S} \subseteq \mathcal{T}$ and $\operatorname{pred}_{\mathcal{T}}(s)=\operatorname{pred}_{\mathcal{S}}(s)$ for all $s \in \mathcal{S}$

Maximal trees

Trees ordered by end-extension: $\mathcal{S} \leq \mathcal{T}: \mathcal{S} \subseteq \mathcal{T}$ and $\operatorname{pred}_{\mathcal{T}}(s)=\operatorname{pred}_{\mathcal{S}}(s)$ for all $s \in \mathcal{S}$
\mathcal{T} maximal tree in $\mathbb{P}: \mathcal{T} \subseteq \mathbb{P}$ without proper end-extension

Maximal trees

Trees ordered by end-extension:
$\mathcal{S} \leq \mathcal{T}: \mathcal{S} \subseteq \mathcal{T}$ and $\operatorname{pred}_{\mathcal{T}}(s)=\operatorname{pred}_{\mathcal{S}}(s)$ for all $s \in \mathcal{S}$
\mathcal{T} maximal tree in $\mathbb{P}: \mathcal{T} \subseteq \mathbb{P}$ without proper end-extension
Fact. $\mathcal{T} \subseteq \mathbb{P}$ is maximal iff for all $p \in \mathbb{P}$

- either there is $q \in \mathcal{T}$ with $q \leq p$,
- or there are incomparable $q, r \in \mathcal{T}$ with $p \leq q, r$.

Consider

- $(\mathbb{P}, \leq)=(\mathcal{P}(\omega) \backslash\{\emptyset\}, \subseteq)$
- $(\mathbb{P}, \leq)=\left([\omega]^{\omega}, \subseteq^{*}\right)$

Consider

- $(\mathbb{P}, \leq)=(\mathcal{P}(\omega) \backslash\{\emptyset\}, \subseteq)$
- $(\mathbb{P}, \leq)=\left([\omega]^{\omega}, \subseteq^{*}\right)$

Recall: $A \subseteq^{*} B$ iff $A \backslash B$ is finite

Consider

- $(\mathbb{P}, \leq)=(\mathcal{P}(\omega) \backslash\{\emptyset\}, \subseteq)$
- $(\mathbb{P}, \leq)=\left([\omega]^{\omega}, \subseteq^{*}\right)$

Recall: $A \subseteq^{*} B$ iff $A \backslash B$ is finite
Monk:

- \exists maximal trees in $\mathcal{P}(\omega)$ of size ω and \mathfrak{c}
- \exists maximal trees in $\mathcal{P}(\omega)$ /Fin of size \mathfrak{c}

Maximal trees in $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega) /$ Fin

Consider

- $(\mathbb{P}, \leq)=(\mathcal{P}(\omega) \backslash\{\emptyset\}, \subseteq)$
- $(\mathbb{P}, \leq)=\left([\omega]^{\omega}, \subseteq^{*}\right)$

Recall: $A \subseteq{ }^{*} B$ iff $A \backslash B$ is finite
Monk:

- \exists maximal trees in $\mathcal{P}(\omega)$ of size ω and \mathfrak{c}
- \exists maximal trees in $\mathcal{P}(\omega)$ /Fin of size \mathfrak{c}

Question (Monk)

Are there consistently maximal trees of other sizes?

Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg C H+\exists\right.$ maximal tree of height and width ω_{1} in $\mathcal{P}(\omega) /$ Fin $)$

Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg C H+\exists\right.$ maximal tree of height and width ω_{1} in $\mathcal{P}(\omega) /$ Fin $)$

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg \mathrm{CH}+\exists\right.$ tree of height ω and width ω_{1} which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega) /$ Fin)

Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg C H+\exists\right.$ maximal tree of height and width ω_{1} in $\mathcal{P}(\omega) /$ Fin $)$

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg \mathrm{CH}+\exists\right.$ tree of height ω and width ω_{1} which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega) /$ Fin)

In fact, the existence of such trees follows from a parametrized diamond principle.

Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg C H+\exists\right.$ maximal tree of height and width ω_{1} in $\mathcal{P}(\omega) /$ Fin $)$
Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg \mathrm{CH}+\exists\right.$ tree of height ω and width ω_{1} which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega) /$ Fin)

In fact, the existence of such trees follows from a parametrized diamond principle.
$\mathcal{A} \subseteq[\omega]^{\omega}$ unreaped: for all $B \in[\omega]^{\omega}$ there is $A \in \mathcal{A}$ such that either $A \cap B$ is finite or $A \subseteq^{*} B$

Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg C H+\exists\right.$ maximal tree of height and width ω_{1} in $\mathcal{P}(\omega) /$ Fin $)$

Theorem (Campero, Cancino, Hrušák, Miranda)

$\operatorname{CON}\left(\neg \mathrm{CH}+\exists\right.$ tree of height ω and width ω_{1} which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega) /$ Fin)

In fact, the existence of such trees follows from a parametrized diamond principle.
$\mathcal{A} \subseteq[\omega]^{\omega}$ unreaped: for all $B \in[\omega]^{\omega}$ there is $A \in \mathcal{A}$ such that either $A \cap B$ is finite or $A \subseteq^{*} B$
$\mathfrak{t r}:=\min \{|\mathcal{T}|: \mathcal{T}$ maximal tree in $\mathcal{P}(\omega) /$ Fin $\} \quad$ the tree number

Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg C H+\exists\right.$ maximal tree of height and width ω_{1} in $\mathcal{P}(\omega) /$ Fin $)$

Theorem (Campero, Cancino, Hrušák, Miranda)

$\operatorname{CON}\left(\neg \mathrm{CH}+\exists\right.$ tree of height ω and width ω_{1} which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega) /$ Fin)

In fact, the existence of such trees follows from a parametrized diamond principle.
$\mathcal{A} \subseteq[\omega]^{\omega}$ unreaped: for all $B \in[\omega]^{\omega}$ there is $A \in \mathcal{A}$ such that either $A \cap B$ is finite or $A \subseteq{ }^{*} B$
$\mathfrak{t r}:=\min \{|\mathcal{T}|: \mathcal{T}$ maximal tree in $\mathcal{P}(\omega) /$ Fin $\} \quad$ the tree number $\mathfrak{r}:=\min \{|\mathcal{A}|: \mathcal{A}$ unreaped $\}$ the reaping number

Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\neg C H+\exists\right.$ maximal tree of height and width ω_{1} in $\mathcal{P}(\omega) /$ Fin $)$

Theorem (Campero, Cancino, Hrušák, Miranda)

$\operatorname{CON}\left(\neg \mathrm{CH}+\exists\right.$ tree of height ω and width ω_{1} which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega) /$ Fin)

In fact, the existence of such trees follows from a parametrized diamond principle.
$\mathcal{A} \subseteq[\omega]^{\omega}$ unreaped: for all $B \in[\omega]^{\omega}$ there is $A \in \mathcal{A}$ such that either $A \cap B$ is finite or $A \subseteq^{*} B$
$\mathfrak{t r}:=\min \{|\mathcal{T}|: \mathcal{T}$ maximal tree in $\mathcal{P}(\omega) /$ Fin $\} \quad$ the tree number $\mathfrak{r}:=\min \{|\mathcal{A}|: \mathcal{A}$ unreaped $\}$ the reaping number

Fact. $\omega_{1} \leq \mathfrak{r} \leq \mathfrak{t r} \leq \mathfrak{c}$

Results

Question (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\omega_{1}<\mathfrak{t r}<\mathfrak{c}\right) ?$

Results

Question (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\omega_{1}<\mathfrak{t r}<\mathfrak{c}\right) ?$

Theorem (J. Br. 2015)
$\operatorname{CON}(\mathfrak{t r}=\kappa<\mathfrak{c}), \kappa$ arbitrary regular uncountable

Results

Question (Campero, Cancino, Hrušák, Miranda)
$\operatorname{CON}\left(\omega_{1}<\mathfrak{t r}<\mathfrak{c}\right) ?$
Theorem (J. Br. 2015)
$\operatorname{CON}(\mathfrak{t r}=\kappa<\mathfrak{c}), \kappa$ arbitrary regular uncountable
Spec $_{\text {tree }}=\{\kappa: \exists$ maximal tree in $\mathcal{P}(\omega) /$ Fin of size $\kappa\}$ (tree spectrum)

Results

Question (Campero, Cancino, Hrušák, Miranda)

$\operatorname{CON}\left(\omega_{1}<\mathfrak{t r}<\mathfrak{c}\right) ?$
Theorem (J. Br. 2015)
$\operatorname{CON}(\mathfrak{t r}=\kappa<\mathfrak{c}), \kappa$ arbitrary regular uncountable
Spec $_{\text {tree }}=\{\kappa: \exists$ maximal tree in $\mathcal{P}(\omega) /$ Fin of size $\kappa\}$ (tree spectrum)

Theorem (J. Br. 2015)
$\operatorname{CON}\left(\mathrm{Spec}_{\text {tree }}\right.$ is large)

Results

Question (Campero, Cancino, Hrušák, Miranda)

$\operatorname{CON}\left(\omega_{1}<\mathfrak{t r}<\mathfrak{c}\right) ?$

Theorem (J. Br. 2015)

$\operatorname{CON}(\mathfrak{t r}=\kappa<\mathfrak{c}), \kappa$ arbitrary regular uncountable
Spec $_{\text {tree }}=\{\kappa: \exists$ maximal tree in $\mathcal{P}(\omega) /$ Fin of size $\kappa\}$ (tree spectrum)

Theorem (J. Br. 2015)
$\operatorname{CON}\left(\mathrm{Spec}_{\text {tree }}\right.$ is large $)$

Theorem (J. Br. 2015)
$\operatorname{CON}(\kappa<\mathfrak{c}+\exists$ tree of width κ and height ω which is maximal in both $\mathcal{P}(\omega) /$ Fin and $\mathcal{P}(\omega))$, κ arbitrary regular uncountable

Mathias forcing

Let \mathcal{F} be a filter on ω containing all cofinite sets

Mathias forcing

Let \mathcal{F} be a filter on ω containing all cofinite sets
Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in[\omega]^{<\omega}, A \in \mathcal{F}, \max (s)<\min (A)$

Mathias forcing

Let \mathcal{F} be a filter on ω containing all cofinite sets
Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in[\omega]^{<\omega}, A \in \mathcal{F}, \max (s)<\min (A)$
- Order: $(t, B) \leq(s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Let \mathcal{F} be a filter on ω containing all cofinite sets
Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in[\omega]^{<\omega}, A \in \mathcal{F}, \max (s)<\min (A)$
- Order: $(t, B) \leq(s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

- $\mathbb{M}(\mathcal{F})$ is σ-centered

Mathias forcing

Let \mathcal{F} be a filter on ω containing all cofinite sets
Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in[\omega]^{<\omega}, A \in \mathcal{F}, \max (s)<\min (A)$
- Order: $(t, B) \leq(s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

- $\mathbb{M}(\mathcal{F})$ is σ-centered
- $\mathbb{M}(\mathcal{F})$ generically adds pseudointersection X of \mathcal{F} s.t. X has infinite intersection with all \mathcal{F}-positive sets of ground model

Mathias forcing

Let \mathcal{F} be a filter on ω containing all cofinite sets
Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in[\omega]^{<\omega}, A \in \mathcal{F}, \max (s)<\min (A)$
- Order: $(t, B) \leq(s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

- $\mathbb{M}(\mathcal{F})$ is σ-centered
- $\mathbb{M}(\mathcal{F})$ generically adds pseudointersection X of \mathcal{F} s.t. X has infinite intersection with all \mathcal{F}-positive sets of ground model
X pseudointersection of $\mathcal{F}: X \subseteq^{*} A$ for all $A \in \mathcal{F}$

Mathias forcing

Let \mathcal{F} be a filter on ω containing all cofinite sets
Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in[\omega]^{<\omega}, A \in \mathcal{F}, \max (s)<\min (A)$
- Order: $(t, B) \leq(s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

- $\mathbb{M}(\mathcal{F})$ is σ-centered
- $\mathbb{M}(\mathcal{F})$ generically adds pseudointersection X of \mathcal{F} s.t. X has infinite intersection with all \mathcal{F}-positive sets of ground model
X pseudointersection of $\mathcal{F}: X \subseteq^{*} A$ for all $A \in \mathcal{F}$
$C \in[\omega]^{\omega} \mathcal{F}$-positive: $C \cap A$ is infinite for all $A \in \mathcal{F}$

Matrix trees

Let γ be an ordinal.
A tree $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ in $\mathcal{P}(\omega) /$ Fin is a matrix tree if

Let γ be an ordinal.
A tree $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ in $\mathcal{P}(\omega) /$ Fin is a matrix tree if
(i) for $\alpha \leq \gamma, \operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$,

Let γ be an ordinal.
A tree $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ in $\mathcal{P}(\omega) /$ Fin is a matrix tree if
(i) for $\alpha \leq \gamma, \operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$,
(ii) for $\beta \leq \gamma$ and $\alpha<\alpha^{\prime} \leq \gamma, A_{\alpha^{\prime}}^{\beta} \subseteq^{*} A_{\alpha}^{\beta}$,

Let γ be an ordinal.
A tree $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ in $\mathcal{P}(\omega) /$ Fin is a matrix tree if
(i) for $\alpha \leq \gamma, \operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$,
(ii) for $\beta \leq \gamma$ and $\alpha<\alpha^{\prime} \leq \gamma, A_{\alpha^{\prime}}^{\beta} \subseteq^{*} A_{\alpha}^{\beta}$,
(iii) for finite $D \subseteq \gamma+1$ and $\beta \notin D, A_{0}^{\beta} \backslash \bigcup_{\beta^{\prime} \in D} A_{0}^{\beta^{\prime}}$ is infinite,

Let γ be an ordinal.
A tree $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ in $\mathcal{P}(\omega) /$ Fin is a matrix tree if
(i) for $\alpha \leq \gamma, \operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$,
(ii) for $\beta \leq \gamma$ and $\alpha<\alpha^{\prime} \leq \gamma, A_{\alpha^{\prime}}^{\beta} \subseteq^{*} A_{\alpha}^{\beta}$,
(iii) for finite $D \subseteq \gamma+1$ and $\beta \notin D, A_{0}^{\beta} \backslash \bigcup_{\beta^{\prime} \in D} A_{0}^{\beta^{\prime}}$ is infinite, (iv) for $\alpha>0,\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$ is an a.d. family, and

Let γ be an ordinal.
A tree $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ in $\mathcal{P}(\omega) /$ Fin is a matrix tree if
(i) for $\alpha \leq \gamma, \operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$,
(ii) for $\beta \leq \gamma$ and $\alpha<\alpha^{\prime} \leq \gamma, A_{\alpha^{\prime}}^{\beta} \subseteq^{*} A_{\alpha}^{\beta}$,
(iii) for finite $D \subseteq \gamma+1$ and $\beta \notin D, A_{0}^{\beta} \backslash \bigcup_{\beta^{\prime} \in D} A_{0}^{\beta^{\prime}}$ is infinite,
(iv) for $\alpha>0,\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$ is an a.d. family, and
(v) for $\beta \neq \beta^{\prime}, A_{\gamma}^{\beta}$ and $A_{0}^{\beta^{\prime}}$ are almost disjoint.

Matrix trees

Let γ be an ordinal.
A tree $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ in $\mathcal{P}(\omega) /$ Fin is a matrix tree if
(i) for $\alpha \leq \gamma, \operatorname{Lev}_{\alpha}(\mathcal{T})=\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$,
(ii) for $\beta \leq \gamma$ and $\alpha<\alpha^{\prime} \leq \gamma, A_{\alpha^{\prime}}^{\beta} \subseteq^{*} A_{\alpha}^{\beta}$,
(iii) for finite $D \subseteq \gamma+1$ and $\beta \notin D, A_{0}^{\beta} \backslash \bigcup_{\beta^{\prime} \in D} A_{0}^{\beta^{\prime}}$ is infinite,
(iv) for $\alpha>0,\left\{A_{\alpha}^{\beta}: \beta \leq \gamma\right\}$ is an a.d. family, and
(v) for $\beta \neq \beta^{\prime}, A_{\gamma}^{\beta}$ and $A_{0}^{\beta^{\prime}}$ are almost disjoint.

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.
Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.
Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.
Let X_{0} and X_{1} be the two generic subsets of ω.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\overline{\beta \leq \gamma}, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.
Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.
Let X_{0} and X_{1} be the two generic subsets of ω.
Let $A_{\gamma+1}^{\beta}=X_{0} \cap X_{1} \cap A_{\gamma}^{\beta}$, infinite by genericity.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.
Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.
Let X_{0} and X_{1} be the two generic subsets of ω.
Let $A_{\gamma+1}^{\beta}=X_{0} \cap X_{1} \cap A_{\gamma}^{\beta}$, infinite by genericity.
Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.
Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.
Let X_{0} and X_{1} be the two generic subsets of ω.
Let $A_{\gamma+1}^{\beta}=X_{0} \cap X_{1} \cap A_{\gamma}^{\beta}$, infinite by genericity.
Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary.
Let $A_{0}^{\gamma+1}=\omega \backslash X_{0}$ and $A_{0}^{\gamma+2}=\omega \backslash X_{1}$.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.
Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.
Let X_{0} and X_{1} be the two generic subsets of ω.
Let $A_{\gamma+1}^{\beta}=X_{0} \cap X_{1} \cap A_{\gamma}^{\beta}$, infinite by genericity.
Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary.
Let $A_{0}^{\gamma+1}=\omega \backslash X_{0}$ and $A_{0}^{\gamma+2}=\omega \backslash X_{1}$.
Then $A_{\gamma+1}^{\beta} \cap A_{0}^{\beta^{\prime}}=\emptyset$ for $\beta \leq \gamma$ and $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.

Extension Lemma 1

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof. Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma, A_{\gamma}^{\beta}$ is \mathcal{F}-positive.
Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.
Let X_{0} and X_{1} be the two generic subsets of ω.
Let $A_{\gamma+1}^{\beta}=X_{0} \cap X_{1} \cap A_{\gamma}^{\beta}$, infinite by genericity.
Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary.
Let $A_{0}^{\gamma+1}=\omega \backslash X_{0}$ and $A_{0}^{\gamma+2}=\omega \backslash X_{1}$.
Then $A_{\gamma+1}^{\beta} \cap A_{0}^{\beta^{\prime}}=\emptyset$ for $\beta \leq \gamma$ and $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Genericity: clause (iii) still satisfied.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.
Let $C \in[\omega]^{\omega}$.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.
Let $C \in[\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.
Let $C \in[\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}^{\prime}.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.
Let $C \in[\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}^{\prime}.
- Case 2: $\left(F \cap A_{\gamma}^{\beta}\right) \backslash C$ is infinite for all $\beta \leq \gamma$ and $F \in \mathcal{F}$.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.
Let $C \in[\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}^{\prime}.
- Case 2: $\left(F \cap A_{\gamma}^{\beta}\right) \backslash C$ is infinite for all $\beta \leq \gamma$ and $F \in \mathcal{F}$. Then $\omega \backslash C \in \mathcal{F}$ by maximality of \mathcal{F}.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.
Let $C \in[\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}^{\prime}.
- Case 2: $\left(F \cap A_{\gamma}^{\beta}\right) \backslash C$ is infinite for all $\beta \leq \gamma$ and $F \in \mathcal{F}$. Then $\omega \backslash C \in \mathcal{F}$ by maximality of \mathcal{F}. Hence $X_{0} \cup X_{1} \subseteq^{*} \omega \backslash C$.

Extension Lemma 2

Add $A_{1}^{\gamma+1} \subseteq A_{0}^{\gamma+1}$ and $A_{1}^{\gamma+2} \subseteq A_{0}^{\gamma+2}$ by ccc forcing s.t. A_{0}^{β} and $A_{1}^{\beta^{\prime}}$ are a.d. for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$ and any $\beta \neq \beta^{\prime}$.
Let $\left\{A_{\alpha}^{\beta^{\prime}}: 1<\alpha \leq \gamma+2\right\}$ be decreasing chains below $A_{1}^{\beta^{\prime}}$ for $\beta^{\prime} \in\{\gamma+1, \gamma+2\}$.
Clauses (iv) and (v) hold. \mathcal{T}^{\prime} matrix tree.
Let $C \in[\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}^{\prime}.
- Case 2: $\left(F \cap A_{\gamma}^{\beta}\right) \backslash C$ is infinite for all $\beta \leq \gamma$ and $F \in \mathcal{F}$. Then $\omega \backslash C \in \mathcal{F}$ by maximality of \mathcal{F}. Hence $X_{0} \cup X_{1} \subseteq^{*} \omega \backslash C$.
Thus $C \subseteq^{*}\left(\omega \backslash X_{0}\right) \cap\left(\omega \backslash X_{1}\right)=A_{0}^{\gamma+1} \cap A_{0}^{\gamma+2}$, and C cannot be added to \mathcal{T}^{\prime}.

Done!

Main theorem

Theorem (J. Br. 2015)
Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega}=\lambda$. There is a ccc generic extension with $\mathfrak{t r}=\kappa$ and $\mathfrak{c}=\lambda$.

Main theorem

Theorem (J. Br. 2015)

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega}=\lambda$. There is a ccc generic extension with $\mathfrak{t r}=\kappa$ and $\mathfrak{c}=\lambda$.

Lemma (Extension Lemma)
Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Main theorem

Theorem (J. Br. 2015)

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega}=\lambda$. There is a ccc generic extension with $\mathfrak{t r}=\kappa$ and $\mathfrak{c}=\lambda$.

Lemma (Extension Lemma)
Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof of Theorem. First add λ Cohen reals.

Main theorem

Theorem (J. Br. 2015)

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega}=\lambda$. There is a ccc generic extension with $\mathfrak{t r}=\kappa$ and $\mathfrak{c}=\lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof of Theorem. First add λ Cohen reals.
Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.

Main theorem

Theorem (J. Br. 2015)

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega}=\lambda$. There is a ccc generic extension with $\mathfrak{t r}=\kappa$ and $\mathfrak{c}=\lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof of Theorem. First add λ Cohen reals.
Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.
Maximality follows from Extension Lemma.

Main theorem

Theorem (J. Br. 2015)

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega}=\lambda$. There is a ccc generic extension with $\mathfrak{t r}=\kappa$ and $\mathfrak{c}=\lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof of Theorem. First add λ Cohen reals.
Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.
Maximality follows from Extension Lemma.
Thus $\mathfrak{c}=\lambda$ and $\mathfrak{t r} \leq \kappa$.

Main theorem

Theorem (J. Br. 2015)

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega}=\lambda$. There is a ccc generic extension with $\mathfrak{t r}=\kappa$ and $\mathfrak{c}=\lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma\right\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}^{\prime}=\left\{A_{\alpha}^{\beta}: \alpha, \beta \leq \gamma+2\right\}$ such that no $C \in[\omega]^{\omega}$ from the ground model can be added to \mathcal{T}^{\prime}.

Proof of Theorem. First add λ Cohen reals.
Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.
Maximality follows from Extension Lemma.
Thus $\mathfrak{c}=\lambda$ and $\mathfrak{t r} \leq \kappa$.
$\mathfrak{t r} \geq \mathfrak{r} \geq \operatorname{cov}(\mathcal{M}) \geq \kappa$ because of Cohen reals added in limit stages.

Further results and problems

All constructions of trees have width \geq cofinality of height.

Further results and problems

All constructions of trees have width \geq cofinality of height.
Theorem (J. Br. 2015)
There are no maximal trees with countable levels in $\mathcal{P}(\omega)$ /Fin.

Further results and problems

All constructions of trees have width \geq cofinality of height.
Theorem (J. Br. 2015)
There are no maximal trees with countable levels in $\mathcal{P}(\omega)$ /Fin.

Open Problem

$\operatorname{CON}\left(\exists\right.$ maximal tree with levels of size ω_{1} and height $\left.\omega_{2}\right)$?

Further results and problems

All constructions of trees have width \geq cofinality of height.
Theorem (J. Br. 2015)
There are no maximal trees with countable levels in $\mathcal{P}(\omega)$ /Fin.

Open Problem

$\operatorname{CON}\left(\exists\right.$ maximal tree with levels of size ω_{1} and height $\left.\omega_{2}\right)$?
Spec $_{\text {tree }}$ can be made large.

Further results and problems

All constructions of trees have width \geq cofinality of height.
Theorem (J. Br. 2015)
There are no maximal trees with countable levels in $\mathcal{P}(\omega)$ /Fin.

Open Problem

$\operatorname{CON}\left(\exists\right.$ maximal tree with levels of size ω_{1} and height $\left.\omega_{2}\right)$?
$S_{\text {Sec }}^{\text {tree }}$ can be made large.

Open Problem

Let C be a set of regular cardinals (possibly satisfying some additional condition). Is there a ccc forcing extension in which Spec $_{\text {tree }}=C$?

