Maximal trees

Jörg Brendle

Kobe University

RIMS Kyoto, November 28, 2016

・ロト ・回ト ・ヨト ・ヨト

E

 (\mathcal{T},\leq) is tree:

- $\bullet \ \exists \ \mathsf{largest} \ \mathsf{element} \ 1$
- $\forall t \in \mathcal{T}$: pred_{\mathcal{T}} $(t) = \{s \in \mathcal{T} : s \ge t\}$ is well-ordered by \ge (predecessors)

・ 同 ト ・ ヨ ト ・ ヨ ト

 (\mathcal{T},\leq) is tree:

- $\bullet \ \exists \ \mathsf{largest} \ \mathsf{element} \ 1$
- $\forall t \in \mathcal{T}$: pred_{\mathcal{T}} $(t) = \{s \in \mathcal{T} : s \ge t\}$ is well-ordered by \ge (predecessors)
- $\begin{array}{ll} \text{levels:} & \operatorname{Lev}_{\alpha}(\mathcal{T}) = \{t \in \mathcal{T} : \operatorname{pred}_{\mathcal{T}}(t) \text{ has order type } \alpha\} \\ \text{height:} & \operatorname{ht}(\mathcal{T}) = \min\{\alpha : \operatorname{Lev}_{\alpha}(\mathcal{T}) = \emptyset\} \\ \text{width:} & \sup\{|\operatorname{Lev}_{\alpha}(\mathcal{T})| : \alpha < \operatorname{ht}(\mathcal{T})\} \end{array}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

 (\mathcal{T},\leq) is tree:

- ullet \exists largest element $oldsymbol{1}$
- $\forall t \in \mathcal{T}$: pred_{\mathcal{T}} $(t) = \{s \in \mathcal{T} : s \ge t\}$ is well-ordered by \ge (predecessors)
- $\begin{array}{ll} \text{levels:} & \operatorname{Lev}_{\alpha}(\mathcal{T}) = \{t \in \mathcal{T} : \operatorname{pred}_{\mathcal{T}}(t) \text{ has order type } \alpha\} \\ \text{height:} & \operatorname{ht}(\mathcal{T}) = \min\{\alpha : \operatorname{Lev}_{\alpha}(\mathcal{T}) = \emptyset\} \\ \text{width:} & \sup\{|\operatorname{Lev}_{\alpha}(\mathcal{T})| : \alpha < \operatorname{ht}(\mathcal{T})\} \end{array}$

Let (\mathbb{P}, \leq) p.o. with largest element 1 $\mathcal{T} \subseteq \mathbb{P}$ is subtree of (\mathbb{P}, \leq) : $1 \in \mathcal{T}$ and $(\mathcal{T}, \leq {\upharpoonright}(\mathcal{T} \times \mathcal{T}))$ is tree

・ 同 ト ・ ヨ ト ・ ヨ ト

 (\mathcal{T},\leq) is tree:

- ullet \exists largest element $oldsymbol{1}$
- $\forall t \in \mathcal{T}$: pred_{\mathcal{T}} $(t) = \{s \in \mathcal{T} : s \ge t\}$ is well-ordered by \ge (predecessors)
- $\begin{array}{ll} \text{levels:} & \operatorname{Lev}_{\alpha}(\mathcal{T}) = \{t \in \mathcal{T} : \operatorname{pred}_{\mathcal{T}}(t) \text{ has order type } \alpha\} \\ \text{height:} & \operatorname{ht}(\mathcal{T}) = \min\{\alpha : \operatorname{Lev}_{\alpha}(\mathcal{T}) = \emptyset\} \\ \text{width:} & \sup\{|\operatorname{Lev}_{\alpha}(\mathcal{T})| : \alpha < \operatorname{ht}(\mathcal{T})\} \end{array}$

Let (\mathbb{P}, \leq) p.o. with largest element 1 $\mathcal{T} \subseteq \mathbb{P}$ is subtree of (\mathbb{P}, \leq) : $1 \in \mathcal{T}$ and $(\mathcal{T}, \leq {\upharpoonright}(\mathcal{T} \times \mathcal{T}))$ is tree

<u>Note:</u> incomparable (equivalently, incompatible) elements of \mathcal{T} are not necessarily incompatible in \mathbb{P} .

イロト 不得 とうき とうとう ほう

Trees ordered by *end-extension*: $S \leq T$: $S \subseteq T$ and $\operatorname{pred}_{\mathcal{T}}(s) = \operatorname{pred}_{S}(s)$ for all $s \in S$

SQC

3

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{l} \text{Trees ordered by $end-extension$:}\\ \mathcal{S} \leq \mathcal{T} \text{: } \mathcal{S} \subseteq \mathcal{T} \text{ and } \operatorname{pred}_{\mathcal{T}}(s) = \operatorname{pred}_{\mathcal{S}}(s) \text{ for all } s \in \mathcal{S} \end{array}$

 \mathcal{T} maximal tree in \mathbb{P} : $\mathcal{T} \subseteq \mathbb{P}$ without proper end-extension

・ 同 ト ・ ヨ ト ・ ヨ ト

Trees ordered by *end-extension*:

 $\mathcal{S} \leq \mathcal{T} \text{: } \mathcal{S} \subseteq \mathcal{T} \text{ and } \operatorname{pred}_{\mathcal{T}}(s) = \operatorname{pred}_{\mathcal{S}}(s) \text{ for all } s \in \mathcal{S}$

 \mathcal{T} maximal tree in \mathbb{P} : $\mathcal{T} \subseteq \mathbb{P}$ without proper end-extension

<u>Fact.</u> $\mathcal{T} \subseteq \mathbb{P}$ is maximal iff for all $p \in \mathbb{P}$

- *either* there is $q \in \mathcal{T}$ with $q \leq p$,
- or there are incomparable $q, r \in \mathcal{T}$ with $p \leq q, r$.

(日本) (日本) (日本)

•
$$(\mathbb{P}, \leq) = (\mathcal{P}(\omega) \setminus \{\emptyset\}, \subseteq)$$

•
$$(\mathbb{P}, \leq) = ([\omega]^{\omega}, \subseteq^*)$$

E

•
$$(\mathbb{P}, \leq) = (\mathcal{P}(\omega) \setminus \{\emptyset\}, \subseteq)$$

•
$$(\mathbb{P}, \leq) = ([\omega]^{\omega}, \subseteq^*)$$

Recall: $A \subseteq^* B$ iff $A \setminus B$ is finite

<ロ> <部> <部> <き> <き> <き> <き</p>

SQC

- $(\mathbb{P}, \leq) = (\mathcal{P}(\omega) \setminus \{\emptyset\}, \subseteq)$
- $(\mathbb{P}, \leq) = ([\omega]^{\omega}, \subseteq^*)$

Recall: $A \subseteq^* B$ iff $A \setminus B$ is finite

Monk:

- \exists maximal trees in $\mathcal{P}(\omega)$ of size ω and \mathfrak{c}
- \exists maximal trees in $\mathcal{P}(\omega)/\mathrm{Fin}$ of size \mathfrak{c}

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $(\mathbb{P}, \leq) = (\mathcal{P}(\omega) \setminus \{\emptyset\}, \subseteq)$
- $(\mathbb{P}, \leq) = ([\omega]^{\omega}, \subseteq^*)$

Recall: $A \subseteq^* B$ iff $A \setminus B$ is finite

Monk:

- \exists maximal trees in $\mathcal{P}(\omega)$ of size ω and \mathfrak{c}
- \exists maximal trees in $\mathcal{P}(\omega)/\mathrm{Fin}$ of size \mathfrak{c}

Question (Monk)

Are there consistently maximal trees of other sizes?

((日) (王) (王) (王)

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists maximal tree of height and width <math>\omega_1$ in $\mathcal{P}(\omega)/\text{Fin})$

・ 同 ト ・ ヨ ト ・ ヨ ト …

DQ P

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists maximal tree of height and width \omega_1 in \mathcal{P}(\omega)/Fin)$

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists$ tree of height ω and width ω_1 which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega)/\text{Fin}$)

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists maximal tree of height and width \omega_1 in \mathcal{P}(\omega)/Fin)$

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists$ tree of height ω and width ω_1 which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega)/\text{Fin}$)

In fact, the existence of such trees follows from a parametrized diamond principle.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists maximal tree of height and width <math>\omega_1$ in $\mathcal{P}(\omega)/\text{Fin})$

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists$ tree of height ω and width ω_1 which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega)/\text{Fin}$)

In fact, the existence of such trees follows from a parametrized diamond principle.

 $\mathcal{A} \subseteq [\omega]^{\omega} \text{ unreaped: for all } B \in [\omega]^{\omega} \text{ there is } A \in \mathcal{A} \text{ such that}$ either $A \cap B$ is finite or $A \subseteq^* B$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists maximal tree of height and width <math>\omega_1$ in $\mathcal{P}(\omega)/\text{Fin})$

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists$ tree of height ω and width ω_1 which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega)/\text{Fin}$)

In fact, the existence of such trees follows from a parametrized diamond principle.

 $\mathcal{A} \subseteq [\omega]^{\omega} \text{ unreaped: for all } B \in [\omega]^{\omega} \text{ there is } A \in \mathcal{A} \text{ such that}$ either $A \cap B$ is finite or $A \subseteq^* B$

 $\mathfrak{tr} := \min\{|\mathcal{T}| : \mathcal{T} \text{ maximal tree in } \mathcal{P}(\omega)/\mathrm{Fin}\}$ the *tree number*

<ロト <回ト < 回ト < 回ト < 回ト -

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists maximal tree of height and width <math>\omega_1$ in $\mathcal{P}(\omega)/\text{Fin})$

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists$ tree of height ω and width ω_1 which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega)/\text{Fin}$)

In fact, the existence of such trees follows from a parametrized diamond principle.

 $\mathcal{A} \subseteq [\omega]^{\omega} \text{ unreaped: for all } B \in [\omega]^{\omega} \text{ there is } A \in \mathcal{A} \text{ such that}$ either $A \cap B$ is finite or $A \subseteq^* B$

 $\begin{array}{ll} \mathfrak{t}\mathfrak{t} := \min\{|\mathcal{T}| : \mathcal{T} \text{ maximal tree in } \mathcal{P}(\omega)/\mathrm{Fin}\} & \text{the tree number} \\ \mathfrak{t} := \min\{|\mathcal{A}| : \mathcal{A} \text{ unreaped}\} & \text{the reaping number} \end{array}$

・同・ ・ヨ・ ・ヨ・

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists maximal tree of height and width <math>\omega_1$ in $\mathcal{P}(\omega)/\text{Fin})$

Theorem (Campero, Cancino, Hrušák, Miranda)

 $CON(\neg CH + \exists$ tree of height ω and width ω_1 which is maximal as a subtree of both $\mathcal{P}(\omega)$ and $\mathcal{P}(\omega)/\text{Fin}$)

In fact, the existence of such trees follows from a parametrized diamond principle.

 $\mathcal{A} \subseteq [\omega]^{\omega} \text{ unreaped: for all } B \in [\omega]^{\omega} \text{ there is } A \in \mathcal{A} \text{ such that} \\ \text{ either } A \cap B \text{ is finite or } A \subseteq^* B$

 $\begin{array}{ll} \mathfrak{t}\mathfrak{t} := \min\{|\mathcal{T}| : \mathcal{T} \text{ maximal tree in } \mathcal{P}(\omega)/\mathrm{Fin}\} & \text{the tree number} \\ \mathfrak{r} := \min\{|\mathcal{A}| : \mathcal{A} \text{ unreaped}\} & \text{the reaping number} \end{array}$

<u>Fact.</u> $\omega_1 \leq \mathfrak{r} \leq \mathfrak{tr} \leq \mathfrak{c}$

Question (Campero, Cancino, Hrušák, Miranda)

 $\mathsf{CON}(\omega_1 < \mathfrak{tr} < \mathfrak{c})?$

・ロト ・回ト ・ヨト ・ヨト

1

Question (Campero, Cancino, Hrušák, Miranda)

 $\mathsf{CON}(\omega_1 < \mathfrak{tr} < \mathfrak{c})?$

Theorem (J. Br. 2015)

 $CON(\mathfrak{tr} = \kappa < \mathfrak{c}), \kappa$ arbitrary regular uncountable

・同・ ・ヨ・ ・ヨ・

SQA

Question (Campero, Cancino, Hrušák, Miranda)

 $\mathsf{CON}(\omega_1 < \mathfrak{tr} < \mathfrak{c})?$

Theorem (J. Br. 2015)

 $CON(\mathfrak{tr} = \kappa < \mathfrak{c}), \kappa$ arbitrary regular uncountable

 $\mathsf{Spec}_{\mathrm{tree}} = \{\kappa : \exists \text{ maximal tree in } \mathcal{P}(\omega) / \mathrm{Fin of size } \kappa\}$ (tree spectrum)

Question (Campero, Cancino, Hrušák, Miranda)

 $\mathsf{CON}(\omega_1 < \mathfrak{tr} < \mathfrak{c})?$

Theorem (J. Br. 2015)

 $CON(\mathfrak{tr} = \kappa < \mathfrak{c}), \kappa$ arbitrary regular uncountable

 $\mathsf{Spec}_{\mathrm{tree}} = \{\kappa : \exists \text{ maximal tree in } \mathcal{P}(\omega) / \mathrm{Fin of size } \kappa\}$ (tree spectrum)

Theorem (J. Br. 2015)

 $CON(Spec_{tree} is large)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Question (Campero, Cancino, Hrušák, Miranda)

 $\mathsf{CON}(\omega_1 < \mathfrak{tr} < \mathfrak{c})?$

Theorem (J. Br. 2015)

 $CON(\mathfrak{tr} = \kappa < \mathfrak{c}), \kappa$ arbitrary regular uncountable

 $\mathsf{Spec}_{\mathrm{tree}} = \{\kappa : \exists \text{ maximal tree in } \mathcal{P}(\omega) / \mathrm{Fin of size } \kappa\}$ (tree spectrum)

Theorem (J. Br. 2015)

CON(Spec_{tree} is large)

Theorem (J. Br. 2015)

 $CON(\kappa < \mathfrak{c} + \exists \text{ tree of width } \kappa \text{ and height } \omega \text{ which is maximal in both } \mathcal{P}(\omega)/\text{Fin and } \mathcal{P}(\omega)), \kappa \text{ arbitrary regular uncountable}$

naa

・ロト ・回ト ・ヨト ・ヨト

∃ \$\\$<</p>\$\\$

Mathias forcing $\mathbb{M}(\mathcal{F})$:

• Conditions: (s, A) s.t. $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, $\max(s) < \min(A)$

Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, $\max(s) < \min(A)$
- Order: $(t,B) \leq (s,A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

・ 同 ト ・ ヨ ト ・ ヨ ト

Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, $\max(s) < \min(A)$
- Order: $(t,B) \leq (s,A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

• $\mathbb{M}(\mathcal{F})$ is σ -centered

- 4 同 ト 4 日 ト - 日

Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, $\max(s) < \min(A)$
- Order: $(t, B) \leq (s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

- $\mathbb{M}(\mathcal{F})$ is σ -centered
- $\mathbb{M}(\mathcal{F})$ generically adds pseudointersection X of \mathcal{F} s.t. X has infinite intersection with all \mathcal{F} -positive sets of ground model

・ 同 ト ・ ヨ ト ・ ヨ ト

Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, $\max(s) < \min(A)$
- Order: $(t, B) \leq (s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

- $\mathbb{M}(\mathcal{F})$ is σ -centered
- $\mathbb{M}(\mathcal{F})$ generically adds pseudointersection X of \mathcal{F} s.t. X has infinite intersection with all \mathcal{F} -positive sets of ground model

X pseudointersection of \mathcal{F} : $X \subseteq^* A$ for all $A \in \mathcal{F}$

(4月) (日) (日) 日

Mathias forcing $\mathbb{M}(\mathcal{F})$:

- Conditions: (s, A) s.t. $s \in [\omega]^{<\omega}$, $A \in \mathcal{F}$, $\max(s) < \min(A)$
- Order: $(t, B) \leq (s, A)$ if $s \subseteq t \subseteq s \cup A$ and $B \subseteq A$

Then:

- $\mathbb{M}(\mathcal{F})$ is σ -centered
- $\mathbb{M}(\mathcal{F})$ generically adds pseudointersection X of \mathcal{F} s.t. X has infinite intersection with all \mathcal{F} -positive sets of ground model

X pseudointersection of \mathcal{F} : $X \subseteq^* A$ for all $A \in \mathcal{F}$ $C \in [\omega]^{\omega} \mathcal{F}$ -positive: $C \cap A$ is infinite for all $A \in \mathcal{F}$

(4月) (日) (日) 日

Let γ be an ordinal. A tree $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ in $\mathcal{P}(\omega)/\text{Fin}$ is a *matrix tree* if

イロト 人間ト イヨト イヨト

Э

SQC

Let γ be an ordinal. A tree $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ in $\mathcal{P}(\omega)/\text{Fin is a matrix tree if}$ (i) for $\alpha \leq \gamma$, $\text{Lev}_{\alpha}(\mathcal{T}) = \{A_{\alpha}^{\beta} : \beta \leq \gamma\}$,

< /₽ > < ∃ >

 $\equiv \rightarrow$

Let γ be an ordinal. A tree $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ in $\mathcal{P}(\omega)/\text{Fin is a matrix tree if}$ (i) for $\alpha \leq \gamma$, $\text{Lev}_{\alpha}(\mathcal{T}) = \{A_{\alpha}^{\beta} : \beta \leq \gamma\}$, (ii) for $\beta \leq \gamma$ and $\alpha < \alpha' \leq \gamma$, $A_{\alpha'}^{\beta} \subseteq^* A_{\alpha}^{\beta}$,

Let γ be an ordinal. A tree $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ in $\mathcal{P}(\omega)/\text{Fin}$ is a matrix tree if (i) for $\alpha \leq \gamma$, $\text{Lev}_{\alpha}(\mathcal{T}) = \{A_{\alpha}^{\beta} : \beta \leq \gamma\}$, (ii) for $\beta \leq \gamma$ and $\alpha < \alpha' \leq \gamma$, $A_{\alpha'}^{\beta} \subseteq^* A_{\alpha}^{\beta}$, (iii) for finite $D \subseteq \gamma + 1$ and $\beta \notin D$, $A_{0}^{\beta} \setminus \bigcup_{\beta' \in D} A_{0}^{\beta'}$ is infinite,

Let γ be an ordinal. A tree $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ in $\mathcal{P}(\omega)/\text{Fin}$ is a matrix tree if (i) for $\alpha \leq \gamma$, $\text{Lev}_{\alpha}(\mathcal{T}) = \{A_{\alpha}^{\beta} : \beta \leq \gamma\}$, (ii) for $\beta \leq \gamma$ and $\alpha < \alpha' \leq \gamma$, $A_{\alpha'}^{\beta} \subseteq^* A_{\alpha}^{\beta}$, (iii) for finite $D \subseteq \gamma + 1$ and $\beta \notin D$, $A_{0}^{\beta} \setminus \bigcup_{\beta' \in D} A_{0}^{\beta'}$ is infinite, (iv) for $\alpha > 0$, $\{A_{\alpha}^{\beta} : \beta \leq \gamma\}$ is an a.d. family, and

Let γ be an ordinal. A tree $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ in $\mathcal{P}(\omega)/\text{Fin is a matrix tree if}$ (i) for $\alpha \leq \gamma$, $\text{Lev}_{\alpha}(\mathcal{T}) = \{A_{\alpha}^{\beta} : \beta \leq \gamma\}$, (ii) for $\beta \leq \gamma$ and $\alpha < \alpha' \leq \gamma$, $A_{\alpha'}^{\beta} \subseteq^* A_{\alpha}^{\beta}$, (iii) for finite $D \subseteq \gamma + 1$ and $\beta \notin D$, $A_{0}^{\beta} \setminus \bigcup_{\beta' \in D} A_{0}^{\beta'}$ is infinite, (iv) for $\alpha > 0$, $\{A_{\alpha}^{\beta} : \beta \leq \gamma\}$ is an a.d. family, and (v) for $\beta \neq \beta'$, A_{γ}^{β} and $A_{0}^{\beta'}$ are almost disjoint.

Let γ be an ordinal. A tree $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ in $\mathcal{P}(\omega)/\text{Fin is a matrix tree if}$ (i) for $\alpha \leq \gamma$, $\text{Lev}_{\alpha}(\mathcal{T}) = \{A_{\alpha}^{\beta} : \beta \leq \gamma\}$, (ii) for $\beta \leq \gamma$ and $\alpha < \alpha' \leq \gamma$, $A_{\alpha'}^{\beta} \subseteq^* A_{\alpha}^{\beta}$, (iii) for finite $D \subseteq \gamma + 1$ and $\beta \notin D$, $A_{0}^{\beta} \setminus \bigcup_{\beta' \in D} A_{0}^{\beta'}$ is infinite, (iv) for $\alpha > 0$, $\{A_{\alpha}^{\beta} : \beta \leq \gamma\}$ is an a.d. family, and (v) for $\beta \neq \beta'$, A_{γ}^{β} and $A_{0}^{\beta'}$ are almost disjoint.

Lemma (Extension Lemma)

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive.

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive. Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$.

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive. Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$. Let X_0 and X_1 be the two generic subsets of ω .

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive. Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$. Let X_0 and X_1 be the two generic subsets of ω . Let $A_{\gamma+1}^{\beta} = X_0 \cap X_1 \cap A_{\gamma}^{\beta}$, infinite by genericity.

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive. Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$. Let X_0 and X_1 be the two generic subsets of ω . Let $A_{\gamma+1}^{\beta} = X_0 \cap X_1 \cap A_{\gamma}^{\beta}$, infinite by genericity. Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary.

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive. Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$. Let X_0 and X_1 be the two generic subsets of ω . Let $A_{\gamma+1}^{\beta} = X_0 \cap X_1 \cap A_{\gamma}^{\beta}$, infinite by genericity. Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary. Let $A_{0}^{\gamma+1} = \omega \setminus X_0$ and $A_{0}^{\gamma+2} = \omega \setminus X_1$.

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive. Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$. Let X_0 and X_1 be the two generic subsets of ω . Let $A_{\gamma+1}^{\beta} = X_0 \cap X_1 \cap A_{\gamma}^{\beta}$, infinite by genericity. Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary. Let $A_0^{\gamma+1} = \omega \setminus X_0$ and $A_0^{\gamma+2} = \omega \setminus X_1$. Then $A_{\gamma+1}^{\beta} \cap A_0^{\beta'} = \emptyset$ for $\beta \leq \gamma$ and $\beta' \in \{\gamma + 1, \gamma + 2\}$.

・同・ ・ヨト ・ヨト ・ヨ

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof.</u> Let \mathcal{F} be a filter maximal with the property that for all $\beta \leq \gamma$, A_{γ}^{β} is \mathcal{F} -positive. Force with $\mathbb{M}(\mathcal{F}) \times \mathbb{M}(\mathcal{F})$. Let X_0 and X_1 be the two generic subsets of ω . Let $A_{\gamma+1}^{\beta} = X_0 \cap X_1 \cap A_{\gamma}^{\beta}$, infinite by genericity. Let $A_{\gamma+2}^{\beta} \subseteq A_{\gamma+1}^{\beta}$ arbitrary. Let $A_{\gamma+1}^{0} = \omega \setminus X_0$ and $A_0^{\gamma+2} = \omega \setminus X_1$. Then $A_{\gamma+1}^{\beta} \cap A_0^{\beta'} = \emptyset$ for $\beta \leq \gamma$ and $\beta' \in \{\gamma + 1, \gamma + 2\}$. Genericity: clause (iii) still satisfied.

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$.

イロト 不得 とうせい かほとう ほ

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$.

イロト 不得 トイヨト イヨト 二日

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Let $C \in [\omega]^{\omega}$.

イロト 不得 とうせい かほとう ほ

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Let
$$C \in [\omega]^{\omega}$$
.
• Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$.

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Let $C \in [\omega]^{\omega}$. • Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}' .

(本語) (本語) (本語) (二語)

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Let $C \in [\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}' .
- Case 2: $(F \cap A_{\gamma}^{\beta}) \setminus C$ is infinite for all $\beta \leq \gamma$ and $F \in \mathcal{F}$.

- 4 同 2 4 日 2 4 日 2 - 日

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Let $C \in [\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}' .
- Case 2: (F ∩ A^β_γ) \ C is infinite for all β ≤ γ and F ∈ F. Then ω \ C ∈ F by maximality of F.

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Let $C \in [\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}' .
- Case 2: (F ∩ A^β_γ) \ C is infinite for all β ≤ γ and F ∈ F. Then ω \ C ∈ F by maximality of F. Hence X₀ ∪ X₁ ⊆* ω \ C.

Add $A_1^{\gamma+1} \subseteq A_0^{\gamma+1}$ and $A_1^{\gamma+2} \subseteq A_0^{\gamma+2}$ by ccc forcing s.t. A_0^{β} and $A_1^{\beta'}$ are a.d. for $\beta' \in \{\gamma + 1, \gamma + 2\}$ and any $\beta \neq \beta'$. Let $\{A_{\alpha}^{\beta'} : 1 < \alpha \leq \gamma + 2\}$ be decreasing chains below $A_1^{\beta'}$ for $\beta' \in \{\gamma + 1, \gamma + 2\}$. Clauses (iv) and (v) hold. \mathcal{T}' matrix tree.

Let $C \in [\omega]^{\omega}$.

- Case 1: $F \cap A_{\gamma}^{\beta} \subseteq^{*} C$ for some $\beta \leq \gamma$ and some $F \in \mathcal{F}$. Then $A_{\gamma+1}^{\beta} \subseteq^{*} C$, and C cannot be added to \mathcal{T}' .
- Case 2: $(F \cap A_{\gamma}^{\beta}) \setminus C$ is infinite for all $\beta \leq \gamma$ and $F \in \mathcal{F}$. Then $\omega \setminus C \in \mathcal{F}$ by maximality of \mathcal{F} . Hence $X_0 \cup X_1 \subseteq^* \omega \setminus C$. Thus $C \subseteq^* (\omega \setminus X_0) \cap (\omega \setminus X_1) = A_0^{\gamma+1} \cap A_0^{\gamma+2}$, and C cannot be added to \mathcal{T}' .

Done!

イロト 不得 とうき とうとう ほう

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega} = \lambda$. There is a ccc generic extension with $\mathfrak{tr} = \kappa$ and $\mathfrak{c} = \lambda$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega} = \lambda$. There is a ccc generic extension with $\mathfrak{tr} = \kappa$ and $\mathfrak{c} = \lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega} = \lambda$. There is a ccc generic extension with $\mathfrak{tr} = \kappa$ and $\mathfrak{c} = \lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof of Theorem.</u> First add λ Cohen reals.

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega} = \lambda$. There is a ccc generic extension with $\mathfrak{tr} = \kappa$ and $\mathfrak{c} = \lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof of Theorem.</u> First add λ Cohen reals.

Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega} = \lambda$. There is a ccc generic extension with $\mathfrak{tr} = \kappa$ and $\mathfrak{c} = \lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof of Theorem.</u> First add λ Cohen reals.

Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.

Maximality follows from Extension Lemma.

▲聞▶ ▲屋▶ ▲屋▶

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega} = \lambda$. There is a ccc generic extension with $\mathfrak{tr} = \kappa$ and $\mathfrak{c} = \lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof of Theorem.</u> First add λ Cohen reals.

Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.

Maximality follows from Extension Lemma.

Thus $\mathfrak{c} = \lambda$ and $\mathfrak{tr} \leq \kappa$.

Let $\kappa \leq \lambda$ be regular uncountable cardinals with $\lambda^{\omega} = \lambda$. There is a ccc generic extension with $\mathfrak{tr} = \kappa$ and $\mathfrak{c} = \lambda$.

Lemma (Extension Lemma)

Assume $\mathcal{T} = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma\}$ is a matrix tree. Then there is a ccc forcing end-extending \mathcal{T} to a matrix tree $\mathcal{T}' = \{A_{\alpha}^{\beta} : \alpha, \beta \leq \gamma + 2\}$ such that no $C \in [\omega]^{\omega}$ from the ground model can be added to \mathcal{T}' .

<u>Proof of Theorem.</u> First add λ Cohen reals.

Then make finite support iteration of length κ of ccc forcing, building matrix tree of width and height κ along the iteration using Extension Lemma.

Maximality follows from Extension Lemma.

Thus $\mathfrak{c} = \lambda$ and $\mathfrak{tr} \leq \kappa$.

 $\mathfrak{tr} \geq \mathfrak{r} \geq \mathsf{cov}(\mathcal{M}) \geq \kappa$ because of Cohen reals added in limit stages.

Sac

3

イロト イ団ト イヨト イヨト

Further results and problems

All constructions of trees have width \geq cofinality of height.

Theorem (J. Br. 2015)

There are no maximal trees with countable levels in $\mathcal{P}(\omega)/\text{Fin}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (J. Br. 2015)

There are no maximal trees with countable levels in $\mathcal{P}(\omega)/\text{Fin}$.

Open Problem

CON(\exists maximal tree with levels of size ω_1 and height ω_2)?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Theorem (J. Br. 2015)

There are no maximal trees with countable levels in $\mathcal{P}(\omega)/\text{Fin}$.

Open Problem

CON(\exists maximal tree with levels of size ω_1 and height ω_2)?

 $\mathsf{Spec}_{\mathrm{tree}}$ can be made large.

▲聞▶ ▲屋▶ ▲屋▶

Theorem (J. Br. 2015)

There are no maximal trees with countable levels in $\mathcal{P}(\omega)/\text{Fin}$.

Open Problem

CON(\exists maximal tree with levels of size ω_1 and height ω_2)?

 $\mathsf{Spec}_{\mathrm{tree}}$ can be made large.

Open Problem

Let C be a set of regular cardinals (possibly satisfying some additional condition). Is there a ccc forcing extension in which $Spec_{tree} = C$?

・同・ ・ヨ・ ・ヨ・