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Trees

(T ,≤) is tree:

∃ largest element 1

∀t ∈ T : predT (t) = {s ∈ T : s ≥ t} is well-ordered by ≥
(predecessors)

levels: Levα(T ) = {t ∈ T : predT (t) has order type α}
height: ht(T ) = min{α : Levα(T ) = ∅}
width: sup{|Levα(T )| : α < ht(T )}

Let (P,≤) p.o. with largest element 1
T ⊆ P is subtree of (P,≤): 1 ∈ T and (T ,≤ �(T × T )) is tree

Note: incomparable (equivalently, incompatible) elements of T are
not necessarily incompatible in P.
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Maximal trees

Trees ordered by end-extension:
S ≤ T : S ⊆ T and predT (s) = predS(s) for all s ∈ S

T maximal tree in P: T ⊆ P without proper end-extension

Fact. T ⊆ P is maximal iff for all p ∈ P
either there is q ∈ T with q ≤ p,

or there are incomparable q, r ∈ T with p ≤ q, r .
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Maximal trees in P(ω) and P(ω)/Fin

Consider

(P,≤) = (P(ω) \ {∅},⊆)

(P,≤) = ([ω]ω,⊆∗)

Recall: A ⊆∗ B iff A \ B is finite

Monk:

∃ maximal trees in P(ω) of size ω and c

∃ maximal trees in P(ω)/Fin of size c

Question (Monk)

Are there consistently maximal trees of other sizes?

Jörg Brendle Maximal trees



Maximal trees in P(ω) and P(ω)/Fin

Consider

(P,≤) = (P(ω) \ {∅},⊆)

(P,≤) = ([ω]ω,⊆∗)

Recall: A ⊆∗ B iff A \ B is finite

Monk:

∃ maximal trees in P(ω) of size ω and c

∃ maximal trees in P(ω)/Fin of size c

Question (Monk)

Are there consistently maximal trees of other sizes?

Jörg Brendle Maximal trees



Maximal trees in P(ω) and P(ω)/Fin

Consider

(P,≤) = (P(ω) \ {∅},⊆)

(P,≤) = ([ω]ω,⊆∗)

Recall: A ⊆∗ B iff A \ B is finite

Monk:

∃ maximal trees in P(ω) of size ω and c

∃ maximal trees in P(ω)/Fin of size c

Question (Monk)

Are there consistently maximal trees of other sizes?

Jörg Brendle Maximal trees



Maximal trees in P(ω) and P(ω)/Fin

Consider

(P,≤) = (P(ω) \ {∅},⊆)

(P,≤) = ([ω]ω,⊆∗)

Recall: A ⊆∗ B iff A \ B is finite

Monk:

∃ maximal trees in P(ω) of size ω and c

∃ maximal trees in P(ω)/Fin of size c

Question (Monk)

Are there consistently maximal trees of other sizes?

Jörg Brendle Maximal trees



Earlier Results

Theorem (Campero, Cancino, Hrušák, Miranda)

CON(¬CH + ∃ maximal tree of height and width ω1 in P(ω)/Fin)

Theorem (Campero, Cancino, Hrušák, Miranda)

CON(¬CH + ∃ tree of height ω and width ω1 which is maximal as
a subtree of both P(ω) and P(ω)/Fin)

In fact, the existence of such trees follows from a parametrized
diamond principle.

A ⊆ [ω]ω unreaped: for all B ∈ [ω]ω there is A ∈ A such that
either A ∩ B is finite or A ⊆∗ B

tr := min{|T | : T maximal tree in P(ω)/Fin} the tree number
r := min{|A| : A unreaped} the reaping number

Fact. ω1 ≤ r ≤ tr ≤ c
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Results

Question (Campero, Cancino, Hrušák, Miranda)

CON(ω1 < tr < c)?

Theorem (J. Br. 2015)

CON(tr = κ < c), κ arbitrary regular uncountable

Spectree = {κ : ∃ maximal tree in P(ω)/Fin of size κ}
(tree spectrum )

Theorem (J. Br. 2015)

CON(Spectree is large)

Theorem (J. Br. 2015)

CON(κ < c + ∃ tree of width κ and height ω which is maximal in
both P(ω)/Fin and P(ω)), κ arbitrary regular uncountable
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Mathias forcing

Let F be a filter on ω containing all cofinite sets

Mathias forcing M(F):

Conditions: (s,A) s.t. s ∈ [ω]<ω, A ∈ F , max(s) < min(A)

Order: (t,B) ≤ (s,A) if s ⊆ t ⊆ s ∪ A and B ⊆ A

Then:

M(F) is σ-centered

M(F) generically adds pseudointersection X of F s.t. X has
infinite intersection with all F-positive sets of ground model

X pseudointersection of F : X ⊆∗ A for all A ∈ F
C ∈ [ω]ω F-positive: C ∩ A is infinite for all A ∈ F
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Matrix trees

Let γ be an ordinal.
A tree T = {Aβα : α, β ≤ γ} in P(ω)/Fin is a matrix tree if

(i) for α ≤ γ, Levα(T ) = {Aβα : β ≤ γ},
(ii) for β ≤ γ and α < α′ ≤ γ, Aβα′ ⊆∗ Aβα,

(iii) for finite D ⊆ γ + 1 and β /∈ D, Aβ0 \
⋃
β′∈D Aβ

′

0 is infinite,

(iv) for α > 0, {Aβα : β ≤ γ} is an a.d. family, and

(v) for β 6= β′, Aβγ and Aβ
′

0 are almost disjoint.

Lemma (Extension Lemma)

Assume T = {Aβα : α, β ≤ γ} is a matrix tree. Then there is a ccc

forcing end-extending T to a matrix tree T ′ = {Aβα : α, β ≤ γ + 2}
such that no C ∈ [ω]ω from the ground model can be added to T ′.
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Extension Lemma 1

Lemma (Extension Lemma)

Assume T = {Aβα : α, β ≤ γ} is a matrix tree. Then there is a ccc

forcing end-extending T to a matrix tree T ′ = {Aβα : α, β ≤ γ + 2}
such that no C ∈ [ω]ω from the ground model can be added to T ′.

Proof. Let F be a filter maximal with the property that for all
β ≤ γ, Aβγ is F-positive.
Force with M(F)×M(F).
Let X0 and X1 be the two generic subsets of ω.
Let Aβγ+1 = X0 ∩ X1 ∩ Aβγ , infinite by genericity.

Let Aβγ+2 ⊆ Aβγ+1 arbitrary.

Let Aγ+1
0 = ω \ X0 and Aγ+2

0 = ω \ X1.

Then Aβγ+1 ∩ Aβ
′

0 = ∅ for β ≤ γ and β′ ∈ {γ + 1, γ + 2}.
Genericity: clause (iii) still satisfied.
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Extension Lemma 2

Add Aγ+1
1 ⊆ Aγ+1

0 and Aγ+2
1 ⊆ Aγ+2

0 by ccc forcing s.t. Aβ0 and

Aβ
′

1 are a.d. for β′ ∈ {γ + 1, γ + 2} and any β 6= β′.

Let {Aβ
′
α : 1 < α ≤ γ + 2} be decreasing chains below Aβ

′

1 for
β′ ∈ {γ + 1, γ + 2}.
Clauses (iv) and (v) hold. T ′ matrix tree.

Let C ∈ [ω]ω.

Case 1: F ∩ Aβγ ⊆∗ C for some β ≤ γ and some F ∈ F .

Then Aβγ+1 ⊆∗ C , and C cannot be added to T ′.

Case 2: (F ∩ Aβγ ) \ C is infinite for all β ≤ γ and F ∈ F .
Then ω \ C ∈ F by maximality of F .
Hence X0 ∪ X1 ⊆∗ ω \ C .
Thus C ⊆∗ (ω \ X0) ∩ (ω \ X1) = Aγ+1

0 ∩ Aγ+2
0 , and C cannot

be added to T ′.
Done!
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Main theorem

Theorem (J. Br. 2015)

Let κ ≤ λ be regular uncountable cardinals with λω = λ. There is
a ccc generic extension with tr = κ and c = λ.

Lemma (Extension Lemma)

Assume T = {Aβα : α, β ≤ γ} is a matrix tree. Then there is a ccc

forcing end-extending T to a matrix tree T ′ = {Aβα : α, β ≤ γ + 2}
such that no C ∈ [ω]ω from the ground model can be added to T ′.

Proof of Theorem. First add λ Cohen reals.
Then make finite support iteration of length κ of ccc forcing,
building matrix tree of width and height κ along the iteration using
Extension Lemma.
Maximality follows from Extension Lemma.
Thus c = λ and tr ≤ κ.
tr ≥ r ≥ cov(M) ≥ κ because of Cohen reals added in limit stages.
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Further results and problems

All constructions of trees have width ≥ cofinality of height.

Theorem (J. Br. 2015)

There are no maximal trees with countable levels in P(ω)/Fin.

Open Problem

CON(∃ maximal tree with levels of size ω1 and height ω2)?

Spectree can be made large.

Open Problem

Let C be a set of regular cardinals (possibly satisfying some
additional condition). Is there a ccc forcing extension in which
Spectree = C?
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