Mathias-Příkrý forcing and generic ultrafilters

David Chodounský

Institute of Mathematics CAS

Ultrafilters on ω

Definition

An ultrafilter \mathcal{F} on ω is a *P-point* if for each $\mathcal{C} \in [\mathcal{F}]^{\omega}$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition

An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i \colon i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Ultrafilters on ω

Definition

An ultrafilter \mathcal{F} on ω is a *P-point* if for each $\mathcal{C} \in [\mathcal{F}]^{\omega}$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition

An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i \colon i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let $\mathcal F$ be an ultrafilter in ω . The following properties are equivalent:

- ▶ F is selective,
- ▶ $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each tall analytic ideal \mathcal{I} .

Ultrafilters on ω

Definition

An ultrafilter \mathcal{F} on ω is a P-point if for each $\mathcal{C} \in [\mathcal{F}]^{\omega}$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition

An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i \colon i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let $\mathcal F$ be an ultrafilter in ω . The following properties are equivalent:

- ▶ F is selective,
- ▶ $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each tall analytic ideal \mathcal{I} .

Theorem (Zapletal)

An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $\mathcal{I} \subset \mathcal{F}^*$ there is an F_{σ} ideal \mathcal{C} such that $\mathcal{I} \subseteq \mathcal{C} \subseteq \mathcal{F}^*$.

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus \mathsf{Fin}, \subset^*)$ *is a selective ultrafilter.*

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus \mathsf{Fin}, \subset^*)$ is a selective ultrafilter.

Theorem (Todorcevic)

(LC)¹ An ultrafilter is selective if and only if it is a generic filter on $\mathcal{P}(\omega) \setminus \text{Fin over } L(\mathbb{R})$.

 $^{^{1}(}LC)$ denotes the assumption that there exist sufficiently large cardinals in V. In this talk infinitely many Woodin and a measurable above. $^{\circ}$

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus \mathsf{Fin}, \subset^*)$ is a selective ultrafilter.

Theorem (Todorcevic)

(LC)¹ An ultrafilter is selective if and only if it is a generic filter on $\mathcal{P}(\omega) \setminus \text{Fin over } L(\mathbb{R})$.

Let \mathcal{I} be an F_{σ} ideal on ω . Denote by $\mathbb{Q}_{\mathcal{I}}$ the forcing $(\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*)$.

 $^{^{1}(}LC)$ denotes the assumption that there exist sufficiently large cardinals in V. In this talk infinitely many Woodin and a measurable above.

Theorem

The generic filter on the poset $(\mathcal{P}(\omega) \setminus \mathsf{Fin}, \subset^*)$ is a selective ultrafilter.

Theorem (Todorcevic)

(LC)¹ An ultrafilter is selective if and only if it is a generic filter on $\mathcal{P}(\omega) \setminus \text{Fin over } L(\mathbb{R})$.

Let \mathcal{I} be an F_{σ} ideal on ω . Denote by $\mathbb{Q}_{\mathcal{I}}$ the forcing $(\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*)$.

Theorem (Zapletal, Ch.)

(LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- 2. for each closed set $C \subset \mathcal{P}(\omega)$ disjoint with \mathcal{F} there is $e \in \mathcal{F}^*$ such that $C \subseteq \langle \mathcal{I}, \{e\} \rangle$.

 $^{^{1}(}LC)$ denotes the assumption that there exist sufficiently large cardinals in V. In this talk infinitely many Woodin and a measurable above.

Definition (Mathias forcing)

$$\mathbb{M} = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in [\omega]^{\omega} \}$$
$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \sqsubseteq a, F \subset H, \text{ and } a \setminus b \subset H.$$

Definition (Mathias-Příkrý forcing)

Let \mathcal{F} be a filter on ω .

$$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$
$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \sqsubseteq a, F \subset H, \text{ and } a \setminus b \subset H.$$

Definition (Mathias-Příkrý forcing)

Let \mathcal{F} be a filter on ω .

$$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$
$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \sqsubseteq a, F \subset H, \text{ and } a \setminus b \subset H.$$

Definition (Mathias real for \mathcal{F})

$$g = \bigcup \{a \colon \langle a, F \rangle\} \in \mathbb{G}$$
, where \mathbb{G} is an $\mathbb{M}(\mathcal{F})$ generic filter.

Fact

A Mathias real is a pseudo-intersection of \mathcal{F} ($g \subseteq^* F$ for each $F \in \mathcal{F}$).

Definition (Mathias-Příkrý forcing)

Let \mathcal{F} be a filter on ω .

$$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle \colon a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$

$$\langle a, F \rangle < \langle b, H \rangle$$
 if $b \sqsubseteq a, F \subset H$, and $a \setminus b \subset H$.

Definition (Mathias real for \mathcal{F})

$$g = \bigcup \{a \colon \langle a, F \rangle\} \in \mathbb{G}$$
, where \mathbb{G} is an $\mathbb{M}(\mathcal{F})$ generic filter.

Fact

A Mathias real is a pseudo-intersection of \mathcal{F} ($g \subseteq^* F$ for each $F \in \mathcal{F}$).

Definition

$$U \subset [\omega]^{<\omega}$$
 is an \mathcal{F} -universal set if $[F]^{<\omega} \cap U \neq \emptyset$ for each $F \in \mathcal{F}$.

Fact

 $[g]^{<\omega}\cap U\neq\emptyset$ for each $\mathcal F$ -universal set U.

Definition (Pseudogeneric real for \mathcal{F})

Let $\mathcal F$ be a filter on $\omega.$ A set $m\subset\omega$ is a pseudogeneric real for $\mathcal F$ if

- 1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
- 2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F} -universal set U.

Definition (Pseudogeneric real for \mathcal{F})

Let $\mathcal F$ be a filter on ω . A set $m\subset \omega$ is a pseudogeneric real for $\mathcal F$ if

- 1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
- 2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F} -universal set U.

Theorem

If $m \subset \omega$ is a pseudogeneric real for \mathcal{F} and $c \subset \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F} .

Theorem

(LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- 2. for each closed set $C \subset \mathcal{P}(\omega)$ disjoint with \mathcal{F} there is $e \in \mathcal{F}^*$ such that $C \subseteq \langle \mathcal{I}, \{e\} \rangle$.

Proof.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Theorem

(LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- 2. for each closed set $C \subset \mathcal{P}(\omega)$ disjoint with \mathcal{F} there is $e \in \mathcal{F}^*$ such that $C \subseteq \langle \mathcal{I}, \{e\} \rangle$.

Proof.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Lemma (A)

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $M(\mathcal{F}) \Vdash \dot{g} \in D^{V[\dot{g}]}$.

Theorem

(LC) \mathcal{F} is a $\mathbb{Q}_{\mathcal{I}}$ -generic filter over $L(\mathbb{R})$ iff

- 1. \mathcal{F} is a P-point disjoint with \mathcal{I} , and
- 2. for each closed set $C \subset \mathcal{P}(\omega)$ disjoint with \mathcal{F} there is $e \in \mathcal{F}^*$ such that $C \subseteq \langle \mathcal{I}, \{e\} \rangle$.

Proof.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Lemma (A)

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $M(\mathcal{F}) \Vdash \dot{g} \in D^{V[\dot{g}]}$.

Lemma (B)

Let \mathcal{F} be a P-point. Assume there is (in some extension of V) an elementary embedding $j \colon V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $M(\mathcal{F}) \Vdash \dot{g} \in D^{V[\dot{g}]}$.

Lemma (B)

Let $\mathcal F$ be a P-point. Assume there is (in some extension of V) an elementary embedding $j \colon V \to M$ such that $\mathbb R \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal F)$ (over V).

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $M(\mathcal{F}) \Vdash \dot{g} \in D^{V[\dot{g}]}$.

Lemma (B)

Let \mathcal{F} be a P-point. Assume there is (in some extension of V) an elementary embedding $j \colon V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension V[G] where $j: V \to M$ exists.

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $M(\mathcal{F}) \Vdash \dot{g} \in D^{V[\dot{g}]}$.

Lemma (B)

Let \mathcal{F} be a P-point. Assume there is (in some extension of V) an elementary embedding $j \colon V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension V[G] where $j: V \to M$ exists. There is a Mathias real $g \in j(\mathcal{F})$.

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. Then $M(\mathcal{F}) \Vdash \dot{g} \in D^{V[\dot{g}]}$.

Lemma (B)

Let \mathcal{F} be a P-point. Assume there is (in some extension of V) an elementary embedding $j \colon V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_{\mathcal{I}}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension V[G] where $j: V \to M$ exists. There is a Mathias real $g \in j(\mathcal{F})$. Now $g \in D^{V[G]}$ and $D^{V[G]} \cap M = j(D)$, i.e. $g \in j(D) \cap j(\mathcal{F})$.