Reference

Appendix1

Appendix1.5

## Mathias-Prikry type forcing and dominating real

Hiroaki Minami joint work with Michael Hrušák

19 November 2009

Introduction

Reference

Appendix1

Appendix1.5

## Introduction

#### Destructibility of ideals by Forcing

Let I be an ideal on a countable set X. We say I is **tall** if  $\forall A \in [X]^{\omega} \exists I \in I(|A \cap I| = \aleph_0)$ .

#### Example

If  $\mathcal{A}$  is a mad family, then

$$I(\mathcal{A}) = \{I \subset \omega : \exists \text{ finite } \mathcal{F} \subset \mathcal{A} (I \subset \cup \mathcal{F})\}$$

is tall ideal.

#### Destructibility of ideals by Forcing

Let I be an ideal on a countable set X. We say I is **tall** if  $\forall A \in [X]^{\omega} \exists I \in I(|A \cap I| = \aleph_0)$ .

#### Example

If  $\mathcal{A}$  is a mad family, then

$$I(\mathcal{A}) = \{I \subset \omega : \exists \text{ finite } \mathcal{F} \subset \mathcal{A} (I \subset \cup \mathcal{F})\}$$

is tall ideal.

#### Definition

Given an ideal  $\mathcal{I}$  and a forcing notion  $\mathbb{P}$ .  $\mathbb{P}$  destroys  $\mathcal{I}$  if there exists a  $\mathbb{P}$ -name  $\dot{\mathbf{A}}$  for an infinite subset of  $\omega$  such that

$$\Vdash_{\mathbb{P}} \forall I \in I \cap V(|\dot{A} \cap I| < \aleph_0).$$

### Destructibility of ideals by Forcing

Let I be an ideal on a countable set X. We say I is **tall** if  $\forall A \in [X]^{\omega} \exists I \in I(|A \cap I| = \aleph_0)$ .

#### Example

If  $\mathcal{A}$  is a mad family, then

$$I(\mathcal{A}) = \{I \subset \omega : \exists \text{ finite } \mathcal{F} \subset \mathcal{A} (I \subset \cup \mathcal{F})\}$$

is tall ideal.

#### Definition

Given an ideal  $\mathcal{I}$  and a forcing notion  $\mathbb{P}$ .  $\mathbb{P}$  destroys  $\mathcal{I}$  if there exists a  $\mathbb{P}$ -name  $\dot{\mathbf{A}}$  for an infinite subset of  $\omega$  such that

$$\Vdash_{\mathbb{P}} \forall I \in I \cap V(|\dot{A} \cap I| < \aleph_0).$$

Question

When does a given forcing destroy a given ideal?

#### Forcing quotients

Let  $\mathcal{I}$  be a  $\sigma$ -ideal on a Polish space X. Let  $\mathbb{P}_{\mathcal{I}}$  be a forcing notion of  $\mathcal{I}$ -positive Borel subsets of X, ordered by inclusion.

Many proper forcing notions can be presented as forcing of the form  $\mathbb{P}_{\mathcal{I}}.$ 

#### Example

- $\mathbb{C} \simeq \mathbb{P}_{\text{meager}} = \mathcal{B}(2^{\omega})/\mathcal{M}, \mathbb{B} = \mathbb{P}_{\text{null}} = \mathcal{B}(2^{\omega})/\mathcal{N},$
- $\mathbb{S} = \mathcal{B}(\mathbf{2}^{\omega})/\mathsf{cntble}, \mathbb{L} = \mathcal{B}(\omega^{\omega})/\mathsf{not} \mathsf{dominating}, \dots$

#### trace ideal and Katětov order

#### Definition (Brendle)

Let I be an  $\sigma$ -ideal on  $\mathbf{2}^{\omega}$  (or  $\omega^{\omega}$ ). Its trace ideal tr(I) is an ideal on  $\mathbf{2}^{<\omega}$  (or  $\omega^{<\omega}$ ) defined by

#### $a \in tr(I)$ iff $\{r : \exists^{\infty} n \in \omega(r \upharpoonright n \in a)\} \in I$ .

#### Definition

Let **X** and **Y** are countable. Let **I** be an ideal on **X** and  $\mathcal{J}$  be an ideal on **Y**.

#### $I \leq_{K} \mathcal{J}$ if $\exists f: Y \rightarrow X \forall I \in I(f^{-1}[I] \in \mathcal{J}).$

We call this order  $\leq_{\kappa}$  Katětov order.

#### trace ideal and CRN

Let  $\mathcal{J}$  be an ideal on a countable set and  $\mathbf{X} \in \mathcal{J}^+$ . Then

$$\mathcal{J} \upharpoonright \mathbf{X} = \{ \mathbf{J} \cap \mathbf{X} : \mathbf{J} \in \mathcal{J} \}$$

is an ideal on **X**.

#### Theorem (Hrušák, Zapletal)

If  $\mathbb{P}_{I}$  is a proper forcing with CRN and  $\mathcal{J}$  is an ideal on  $\omega$ , then the following are equivalent:

- 1. there is a  $\mathbf{B} \in \mathbb{P}_{\mathbf{I}}$  such that  $\mathbf{B} \Vdash "\mathcal{J}$  is destroyed".
- 2. there is a tr(I)-positive set **a** such that  $\mathcal{J} \leq_{K} tr(I) \upharpoonright a$ .

#### Question

Fix an ideal *I*. Is there a forcing notion which destroys *I* and have a nice property?

#### Theorem (Laflamme)

Every  $\mathbf{F}_{\sigma}$  ideal can be destroyed by a proper  $\omega^{\omega}$ -bounding forcing.

#### Laver forcing associated with filters

#### Definition

Let I be an ideal on  $\omega$ .

 $T \in \mathbb{L}_{I^*} \text{ if } T \subset \omega^{\omega} \text{ is tree } \land$  $\forall t \in T(\text{stem}(T) \subset t \rightarrow \text{Succ}_T(t) = \{n \in \omega : t^{\frown} n \in T\} \in I^*)).$ 

 $\mathbb{L}_{\mathcal{I}^*}$  is ordered by inclusion.

#### Laver forcing associated with filters

#### Definition

Let I be an ideal on  $\omega$ .

 $T \in \mathbb{L}_{I^*} \text{ if } T \subset \omega^{\omega} \text{ is tree } \land$  $\forall t \in T(\text{stem}(T) \subset t \rightarrow \text{Succ}_T(t) = \{n \in \omega : t^{\frown} n \in T\} \in I^*)).$ 

 $\mathbb{L}_{I^*}$  is ordered by inclusion.

#### Proposition

Let **G** be a  $\mathbb{L}_{I^*}$ -generic and  $\dot{\ell}_G$  and  $\dot{a}_G$  be  $\mathbb{L}_{I^*}$ -names such that

$$\vdash \dot{\ell}_{G} = \bigcup \{ \operatorname{stem}(T) : T \in G \} \in \omega^{\omega} \land \dot{a}_{G} = \operatorname{rng}(\dot{\ell}_{G}) \in [\omega]^{\omega}$$

Then ⊩

$$\forall f \in \omega^{\omega} \cap V(f \leq^* \dot{\ell}_G) \text{ and } \\ \forall I \in I \cap V \forall X \in I^+ \cap V(|I \cap \dot{a}_G| < \aleph_0 \land |\dot{a}_G \cap X| = \aleph_0).$$

endix1 Ap

#### Mathias forcing associated with filters

#### Definition

Let I be an ideal on  $\omega$ . Then

$$\langle \mathbf{s}, \mathbf{F} \rangle \in \mathbb{M}_{I^*}$$
 if  $\mathbf{s} \in [\omega]^{<\omega} \land \mathbf{F} \in I^* \land \mathbf{s} \cap \mathbf{F} = \emptyset$ 

ordered by

#### $\langle s, F \rangle \leq \langle t, G \rangle$ if $s \supset t \land F \subset G \land s \setminus t \subset G$ .

I Appendix

#### Mathias forcing associated with filters

#### Definition

Let I be an ideal on  $\omega$ . Then

$$\langle s, F \rangle \in \mathbb{M}_{I^*}$$
 if  $s \in [\omega]^{<\omega} \land F \in I^* \land s \cap F = \emptyset$ 

ordered by

#### $\langle s, F \rangle \leq \langle t, G \rangle$ if $s \supset t \land F \subset G \land s \setminus t \subset G$ .

#### Proposition

Let **G** be a  $\mathbb{M}_{I^*}$ -generic and  $\dot{A}_G$  be a  $\mathbb{M}_{I^*}$ -name such that

$$\Vdash \dot{A}_{G} = \bigcup \{ s \in [\omega]^{<\omega} : \langle s, H \rangle \in G \}.$$

Then

$$\Vdash \forall I \in I \forall X \in I^+(|\dot{A}_G \cap I| < \aleph_0 \land |\dot{A}_G \cap X| = \aleph_0).$$

Introduction

Reference

Appendix1

Appendix1.5

# Preservation of countably tallness

#### Question Fix an ideal I. When do $\mathbb{M}_{I^*}$ or $\mathbb{L}_{I^*}$ have a nice property?

#### Question

Fix an ideal I. When do  $\mathbb{M}_{I^*}$  or  $\mathbb{L}_{I^*}$  have a nice property?

Theorem

Let I be an ideal on  $\omega$ . Then

- (Błaszczyk-Shelah) M<sub>I\*</sub> does not add a Cohen real if and only if *I*\* is a selective ultrafilter.
- 2.  $\mathbb{L}_{I^*}$  does not add a Cohen real if and only if  $I^*$  is a nowhere dense ultrafilter.

#### Theorem

- 1. (Canjar) If  $\mathcal{U}$  is either rapid ultrafilter or not a P-point ultrafilter, then  $\mathbb{M}_{\mathcal{U}}$  adds a dominating real.
- 2. (Brendle) If I is  $\mathbf{F}_{\sigma}$ -ideal, then  $\mathbb{M}_{I^*}$  doesn't add any dominating real.

#### Theorem (Brendle, Hrušák)

Let I be an ideal on  $\omega$ . Then the following are equivalent:

- 1.  $\forall X \in I^+ \forall \mathcal{J} \leq_{\kappa} I \upharpoonright X(\mathcal{J} \text{ is not countably tall.})$
- 2.  $\mathbb{L}_{I^*}$  preserves countable tallness, i.e., if  $\mathcal{L}$  is countable tall, then  $V^{\mathbb{L}_{I^*}} \models \mathcal{L}$  is countable tall.
- 3.  $\mathbb{L}_{I^*}$  strongly preserves countable tallness, i.e.,

#### Theorem (Brendle, Hrušák)

Let I be an ideal on  $\omega$ . Then the following are equivalent:

- 1.  $\forall X \in I^+ \forall \mathcal{J} \leq_{\kappa} I \upharpoonright X(\mathcal{J} \text{ is not countably tall.})$
- 2.  $\mathbb{L}_{I^*}$  preserves countable tallness, i.e., if  $\mathcal{L}$  is countable tall, then  $V^{\mathbb{L}_{I^*}} \models \mathcal{L}$  is countable tall.
- L<sub>I\*</sub> strongly preserves countable tallness, i.e., for every
  L<sub>I\*</sub>-names {A
   <sup>i</sup> n ∈ ω} such that ⊩ ∀n ∈ ω(A
   <sup>i</sup> ∈ [ω]<sup>ω</sup>), there exists {A
   <sup>n</sup> ∈ ω} ⊂ [ω]<sup>ω</sup> in V such that

if 
$$X \in [\omega]^{\omega} \cap V$$
 satisfies  $\forall n \in \omega(|A_n \cap X| = \aleph_0)$ ,  
then  $\Vdash \forall n \in \omega(|X \cap \dot{A}_n| = \aleph_0)$ . (1)

 $\mathbb{M}_{\mathcal{T}^*}$  and dominating real

Reference

opendix1 A

Appendix1.5

#### Question Does the analogue of the last theorem for $M_{I^*}$ hold?

#### Question

Does the analogue of the last theorem for  $\mathbb{M}_{I^*}$  hold? For an ideal I on  $\omega$ ,

$$I^{<\omega} = \{ A \subset [\omega]^{<\omega} \setminus \{ \emptyset \} : \exists I \in I \forall a \in A (a \cap I \neq \emptyset) \}.$$

Then  $\mathcal{I}^{<\omega}$  is an ideal on  $[\omega]^{<\omega} \setminus \{\emptyset\}$ .

#### Question

Does the analogue of the last theorem for  $\mathbb{M}_{I^*}$  hold? For an ideal I on  $\omega$ ,

```
I^{<\omega} = \{ A \subset [\omega]^{<\omega} \setminus \{ \emptyset \} : \exists I \in I \forall a \in A(a \cap I \neq \emptyset) \}.
```

Then  $\mathcal{I}^{<\omega}$  is an ideal on  $[\omega]^{<\omega} \setminus \{\emptyset\}$ .

Theorem (Hrušák, Minami)

The followings are equivalent.

- 1.  $\forall X \in (I^{<\omega}) \forall \mathcal{J} \leq_K I^{<\omega} \upharpoonright X(\mathcal{J} \text{ is not countable tall.})$
- 2.  $M_{I^*}$  strongly preserves countably tallness.
- 3.  $M_{I^*}$  preserves countably tall family.

Reference

Appendix1

Appendix1.5

# $\mathbb{M}_{\mathcal{I}^*}$ and dominating real

ndix1 Ap

#### $\mathbb{M}_{\mathit{I}^*}$ and dominating real

#### Theorem (Hrušák, Minami)

The following are equivalent.

- 1.  $\mathbb{M}_{I^*}$  adds a dominating real.
- 2.  $I^{<\omega}$  is not  $P^+$  ideal.

#### Definition

 $\mathcal{J}$  is  $P^+$ -ideal if for every decreasing sequence  $\{X_n : n \in \omega\}$  of  $\mathcal{J}$ -positive set, there exists  $X \in \mathcal{J}^+$  such that  $X \subset^* X_n$ .

From (1) to (2). Let  $\dot{g}$  be a  $\mathbb{M}_{I^*}$ -name for a dominating real, i.e.,

$$\forall f \in \omega^{\omega} \cap V(\Vdash f \leq^* \dot{g}).$$

For  $f \in \omega^{\omega} \cap V$ , there exists  $s_f \in [\omega]^{<\omega}$ ,  $F_f \in I^*$  and  $n_f \in \omega$  such that

$$\langle s_f, F_f \rangle \Vdash \forall m \geq n_f(f(n) \leq \dot{g}(m)).$$

Fix  $\mathbf{s} \in [\omega]^{<\omega}$  and  $\mathbf{n} \in \omega$  such that

$$\mathcal{F} = \{ f \in \omega^{\omega} : s_f = s \land n_f = n \}$$

is a dominating family. Define

$$X_{s} = \{t \in [\omega \setminus \max(s)]^{<\omega} : \exists F \in I^{*} \exists m \ge n \\ (\langle s \cup t, F \rangle \text{ decides } \dot{g}(m))\}.$$

$$X_{s} = \{t \in [\omega \setminus \max(s)]^{<\omega} : \exists F \in I^{*} \exists m \ge n \\ (\langle s \cup t, F \rangle \text{ decides } \dot{g}(m))\}.$$

Claim  $X_s \in (\mathcal{I}^{<\omega})^+$ .

$$X_{s} = \{t \in [\omega \setminus \max(s)]^{<\omega} : \exists F \in \mathcal{I}^{*} \exists m \ge n \\ (\langle s \cup t, F \rangle \text{ decides } \dot{g}(m)) \}.$$

Claim  $X_s \in (I^{<\omega})^+$ .

Let  $z_t = \{m \ge n : \exists F \in I^*(\langle s \cup t, F \rangle \text{ decides } \dot{g}(m))\}$ . Then define  $H : X_s \to \omega$  by

$$H(t) = \begin{cases} \max(z_t) & \text{if } |z_t| < \omega \\ \min(z_t \setminus \max(t)) & \text{otherwise.} \end{cases}$$

Let  $Y_m = \{H^{-1}[\omega \setminus m]\}$  for  $m \ge n$ . Then  $Y_{m+1} \subset Y_m$ . Claim  $Y_m \in (I^{<\omega})^+$  for  $m \ge n$ .

Let  $\mathbf{Y} \subset^* \mathbf{Y}_m$  for  $m \geq n$ . We shall show  $\mathbf{Y} \in \mathcal{I}^{<\omega}$ . Assume to the contrary that  $Y \in (I^{<\omega})^+$ . Define a function  $g: \omega \to \omega$  by

 $g(m) = \begin{cases} \min\{k : \exists t \in Y \exists m \in \omega \exists F \in I^* \\ (H(t) = m \land \langle s \cup t, F \rangle \Vdash \dot{g}(m) = k) \} \\ \text{if there exists } t \in Y \text{ such that } H(t) = m \\ 0 \\ \text{otherwise.} \end{cases}$ 

Let  $Y \subset^* Y_m$  for  $m \ge n$ . We shall show  $Y \in I^{<\omega}$ . Assume to the contrary that  $Y \in (I^{<\omega})^+$ . Define a function  $g: \omega \to \omega$  by

 $g(m) = \begin{cases} \min\{k : \exists t \in Y \exists m \in \omega \exists F \in I^* \\ (H(t) = m \land \langle s \cup t, F \rangle \Vdash \dot{g}(m) = k) \} \\ \text{if there exists } t \in Y \text{ such that } H(t) = m \\ 0 \\ \text{otherwise.} \end{cases}$ 

Since  $\mathcal{F}$  is a dominating family, there exists  $f \in \mathcal{F}$  and  $m_0 \ge n$  such that  $\forall m \ge m_0(g(m) \le f(m))$ .

Let  $Y \subset^* Y_m$  for  $m \ge n$ . We shall show  $Y \in I^{<\omega}$ . Assume to the contrary that  $Y \in (I^{<\omega})^+$ . Define a function  $g: \omega \to \omega$  by

 $g(m) = \begin{cases} \min\{k : \exists t \in Y \exists m \in \omega \exists F \in I^* \\ (H(t) = m \land \langle s \cup t, F \rangle \Vdash \dot{g}(m) = k) \} \\ \text{if there exists } t \in Y \text{ such that } H(t) = m \\ 0 \\ \text{otherwise.} \end{cases}$ 

Since  $\mathcal{F}$  is a dominating family, there exists  $f \in \mathcal{F}$  and  $m_0 \ge n$ such that  $\forall m \ge m_0(g(m) \le f(m))$ . Then there exists  $m \ge m_0$  and  $t \in Y \cap Y_m \cap F_f$ . Also we can find  $F \in I^*$  such that  $\langle s \cup t, F \rangle \Vdash \dot{g}(m) = g(m)$ . Let  $Y \subset^* Y_m$  for  $m \ge n$ . We shall show  $Y \in I^{<\omega}$ . Assume to the contrary that  $Y \in (I^{<\omega})^+$ . Define a function  $g: \omega \to \omega$  by

 $g(m) = \begin{cases} \min\{k : \exists t \in Y \exists m \in \omega \exists F \in I^* \\ (H(t) = m \land \langle s \cup t, F \rangle \Vdash \dot{g}(m) = k) \} \\ \text{if there exists } t \in Y \text{ such that } H(t) = m \\ 0 \\ \text{otherwise.} \end{cases}$ 

Since  $\mathcal{F}$  is a dominating family, there exists  $f \in \mathcal{F}$  and  $m_0 \ge n$ such that  $\forall m \ge m_0(g(m) \le f(m))$ . Then there exists  $m \ge m_0$  and  $t \in Y \cap Y_m \cap F_f$ . Also we can find  $F \in I^*$  such that  $\langle s \cup t, F \rangle \Vdash \dot{g}(m) = g(m)$ . However  $\langle s, F_f \rangle \Vdash ``\forall m \ge n(f(m) < \dot{g}(m))$ '' and  $\langle s \cup t, F \rangle$  is compatible with  $\langle s, F_f \rangle$ . It is contradiction. Therefore  $Y \in I^{<\omega}$  and  $I^{<\omega}$  is not  $P^+$ -ideal. From (2) to (1). Let  $\langle X_n : n \in \omega \rangle \subset (I^{<\omega})^+$  such that

1.  $X_{n+1} \subset X_n$  for  $n \in \omega$  and

2. there is no pseudointersection in  $(\mathcal{I}^{<\omega})^+$ .

Let  $\langle \mathbf{a}_{\mathbf{k}} : \mathbf{k} \in \omega \rangle$  be an enumeration of  $[\omega]^{<\omega} \setminus \{\emptyset\}$ . Let  $\dot{\mathbf{A}}_{gen}$  be a  $\mathbb{M}_{I^*}$ -name for  $\mathbb{M}_{I^*}$ -generic real( $\subset \omega$ ).  $\mathbb{M}_{\mathcal{I}^*}$  and dominating real

Reference

ndix1 Append

From (2) to (1). Let  $\langle X_n : n \in \omega \rangle \subset (I^{<\omega})^+$  such that

1.  $X_{n+1} \subset X_n$  for  $n \in \omega$  and

2. there is no pseudointersection in  $(\mathcal{I}^{<\omega})^+$ .

Let  $\langle a_k : k \in \omega \rangle$  be an enumeration of  $[\omega]^{<\omega} \setminus \{\emptyset\}$ . Let  $\dot{A}_{gen}$  be a  $\mathbb{M}_{I^*}$ -name for  $\mathbb{M}_{I^*}$ -generic real( $\subset \omega$ ). Define  $\mathbb{M}_{I^*}$ -name  $\dot{g}$  for a function from  $\omega$  to  $\omega$  by

$$\begin{split} \vdash \dot{g}(n) &= \min\{k : a_k \subset [\dot{A}_{gen}]^{<\omega} \cap X_n \land \\ \max(\bigcup\{a_m : I < n \land m = \dot{g}(I)\}) < \min(a_k)\}. \end{split}$$

We shall show  $\dot{g}$  be a dominating real.

 $\mathbb{M}_{I^*}$  and dominating real

Reference

Appendix1

Appendix1.5

#### Let $f \in \omega^{\omega} \cap V$ and $\langle s, F \rangle \in \mathbb{M}_{I^*}$ .

Let 
$$f \in \omega^{\omega} \cap V$$
 and  $\langle s, F \rangle \in \mathbb{M}_{I^*}$ .  
Let

 $I_f = \{a_k \in [\omega]^{<\omega} \setminus \{\emptyset\} : \exists n \in \omega (a_k \in X_n \land k \leq f(n))\}.$ 

Then  $I_f \subset^* X_n$  for every  $n \in \omega$ . So  $I_f \in \mathcal{I}^{<\omega}$  by definition of  $X_n$ . Let  $\hat{I}_f \in \mathcal{I}$  such that  $\forall a \in I_f(a \cap \hat{I}_f \neq \emptyset)$ . Then  $F \setminus \hat{I} \in \mathcal{I}^*$  and  $[F \setminus \hat{I}]^{<\omega} \cap I_f = \emptyset$ .

Let 
$$f \in \omega^{\omega} \cap V$$
 and  $\langle s, F \rangle \in \mathbb{M}_{I^*}$ .  
Let

 $I_f = \{a_k \in [\omega]^{<\omega} \setminus \{\emptyset\} : \exists n \in \omega (a_k \in X_n \land k \leq f(n))\}.$ 

Then  $I_f \subset^* X_n$  for every  $n \in \omega$ . So  $I_f \in \mathcal{I}^{<\omega}$  by definition of  $X_n$ . Let  $\hat{I}_f \in \mathcal{I}$  such that  $\forall a \in I_f(a \cap \hat{I}_f \neq \emptyset)$ . Then  $F \setminus \hat{I} \in \mathcal{I}^*$  and  $[F \setminus \hat{I}]^{<\omega} \cap I_f = \emptyset$ . Put |s|=m. Then  $\langle s, F \setminus I \rangle \leq \langle s, F \rangle$  and

 $\langle s, F \setminus I \rangle \Vdash \forall n > m(f(n) < \dot{g}(n)).$ 

#### **Borel case**

#### Theorem

Suppose I is a Borel ideal. Then the following are equivalent.

- 1. *I* can be extended to an ideal  $\mathcal{J}$  such that  $\mathbb{M}_{\mathcal{J}^*}$  which doesn't add any dominating real.
- 2. I can be extended to a  $P^+$ -ideal.
- 3. *I* can be extended to an  $F_{\sigma}$ -ideal.

Let 
$$\mathcal{Z} = \{ \mathbf{A} \subset \omega : \lim_{n \to \omega} \frac{|\mathbf{A} \cap n|}{n} = \mathbf{0} \}.$$

Corollary

 $\mathbb{M}_{\mathcal{Z}}$  adds a dominating real.

#### Question

Are there forcing notion which destroys  $\mathcal{Z}$  and doesn't add dominating real?

 $\mathbb{M}_{I^*}$  and dominating real

Reference

Appendix1

Appendix1.5

#### **Ultrafilter case**

#### We say an ultrafilter $\mathcal{U}$ is **Canjar** if $\mathcal{U}^{<\omega}$ is $P^+$ ideal.

Question When  $\mathcal{U}$  is Canjar?

 $\mathbb{M}_{I^{\boldsymbol{*}}}$  and dominating real

Reference

Appendix1

Appendix1.5

## Thank you!



#### Reference

- Fernando Hernández-Hernández and Michael Hrušák, "Cardinal invariants of analytic *P*-ideals", Canadian Journal of Mathematics,575–595, vol 59, Number 3, 2007.
- Jörg Brendle and Michael Hrušák,
  "Countable Fréchet Boolean groups: An independence result",
  J. Symbolic Logic Volume 74, Issue 3 (2009), 1061-1068.
- Michael Hrušák and Hiroaki Minami, "Mathias-Prikry type forcing and Laver-Prikry type forcing", preprint.

 $\mathbb{M}_{T^*}$  and dominating real

Reference

Appendix1

Appendix1.5

#### Appendix: Countinuous reading of name

#### Definition

Let *I* be a  $\sigma$ -ideal on a Polish space such that the forcing  $\mathbb{P}_I$  is proper. The forcing  $\mathbb{P}_I$  has the **continuous reading of names** if for every *I*-positive Borel set *B* and a Borel function  $f : B \to 2^{\omega}$  there is an *I*-positive Borel set  $C \subset B$  such that  $f \upharpoonright C$  is continuous.

Go Back

pendix1

Appendix1.5

#### Appendix: Ultrafilter

#### Definition

Let  $\mathcal{U}$  be a filter on  $\omega$ .

- 1.  $\mathcal{U}$  is selective ultrafilter if  $\forall f \in \omega^{\omega} \exists U \in \mathcal{U}(f \upharpoonright U \text{ is one-to-one or constant}).$
- 2.  $\mathcal{U}$  is nowhere dense ultrafilter if  $\forall f: \omega \rightarrow 2^{\omega} \exists U \in \mathcal{U}(F[U] \text{ is nohere dense}).$
- 3.  $\mathcal{U}$  is rapid if  $\forall f \in \omega^{\omega} \exists U \in \mathcal{U}(|U \cap f(n)| \leq n)$ .
- 4.  $\mathcal{U}$  is P-point ultrafilter if

 $\forall f \in \omega^{\omega} \exists U \in \mathcal{U}(f \upharpoonright U \text{ is finite-to-one or constant}).$ 

