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Basic Definitions

We say that two infinite subsets a and b of ω are almost disjoint or
a.d. if a ∩ b is finite.

We say that a family A ⊂ [ω]ω is almost disjoint or a.d. if its members
are pairwise almost disjoint.

A Maximal Almost Disjoint family, or MAD family is an infinite a.d.
family that is not properly contained in a larger a.d. family.

If A ⊂ [ω]ω is an a.d. family, then I(A ) denotes the ideal on ω
generated by A .
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Completely Separable MAD families

Definition
An almost disjoint family A is said to be completely separable if for any
b ∈ I+(A ), there is an a ∈ A with a ⊂ b

Their existence is connected to the existence of ADRs:

Definition
Given C ⊂ [ω]ω, we say that a family A = {ac : c ∈ C } ⊂ [ω]ω is an almost
disjoint refinement (ADR) of C if

1 ∀c ∈ C [ac ⊂ c]
2 ∀c0, c1 ∈ C

[
c0 , c1 =⇒

∣∣∣ac0 ∩ ac1

∣∣∣ < ω].
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Completely Separable MAD families

Facts:

If C ⊂ [ω]ω has an ADR, then there is dense ideal I such that
I ∩ C = 0.

I+ has an ADR for every dense I iff for every dense I, there is a
completely separable A ⊂ I.

If A is completely separable, then for every b ∈ I+(A ), there are c
many a ∈ A such that a ⊂ b.

Question (Erdos-Shelah)
Is there a completely separable MAD family A ⊂ [ω]ω? Is there a
completely separable MAD A ⊂ I for each dense I?
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Completely Separable MAD families

Easy to see that answer is ’yes’ if a = c

(Balcar, Simon, Vojtas): Yes if any one of these holds: s = ω1, b = d,
or d ≤ a

(Balcar, Vojtas): Every non-principal ultrafilter has an ADR.

Theorem (Shelah [2])
If c < ℵω, then the answer is yes.
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Strongly Separable MAD families

There are several possible definitions. Let us rephrase the definition of
completely separable MAD families:

Definition
Given an ideal I ⊂ P(ω), let us say that a set A ⊂ [ω]<ω is I-positive if for
every a ∈ I, ∃s ∈ A [s ∩ a = 0].

A set a ∈ P(ω) is in I+ iff {{n} : n ∈ a} is I-positive.

So A is completely separable iff for every I(A ) positive set A ⊂ [ω]<ω

consisting entirely of singletons, there are c manya ∈ A such that there is
an infinite pairwise disjoint B ∈ [A ]ω so that

⋃
B = a.
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Strongly Separable MAD families

Steprans-Shelah definition: for every I(A ) positive set A ⊂ [ω]<ω, there
are c many a ∈ A such that there is an infinite pairwise disjoint B ∈ [A ]ω

so that
⋃

B ⊂ a.

They applied this to the Calkin Algebra, C (H) = B(H)/K (H).

Definition
A masa in a C∗ algebra is a maximal, abelian, self adjoint subalgebra (C∗

subalgebra).

Theorem (Steprans and Shelah [3])
If there is a strongly separable MAD family (in their sense), then there is a
masa in C (H) that is generated by its projections, and does not lift to a
masa in B(H).
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Strongly Separable MAD families

Question (Steprans and Shelah)
Is there a strongly separable MAD family (in their sense)? Is there one
with the property that for every I(A ) positive set A ⊂ [ω]<ω, there is at
least one a ∈ A such that there is an infinite pairwise disjoint B ∈ [A ]ω so
that
⋃

B ⊂ a? Can one be constructed if c < ℵω?

Definition
An a.d. family A ⊂ [ω]ω is strongly separable if for every I(A ) positive
A ⊂ [ω]<ω there is an a ∈ A such that there is an infinite B ∈ [A ]ω so that⋃

B ⊂ a.

Theorem (R.)
It is consistent that there are no strongly separable MAD families.
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Metrizability of countable Fréchet groups

Definition
Recall that a topological space X is Fréchet if whenever a point p ∈ X is in
the closure of a set A ⊂ X , there is a sequence of points in A converging
to p.

Question (Malykhin)
Is it consistent that every countable Fréchet group is metrizable?

Definition
Let us say that an ideal I is Fréchet if for every I-positive A ⊂ [ω]<ω, there
is an infinite pairwise disjoint B ∈ [A ]ω so that ∀a ∈ I [|a ∩ (

⋃
B)| < ω].
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Metrizability of countable Fréchet groups

If I is a Frechet ideal that is not countably generated, then we can
define a non-metrizable Fréchet topology on 〈[ω]<ω,4〉 by by
stipulating that

{A ⊂ [ω]<ω : ∃a ∈ I∀s ∈ [ω]<ω [s ∩ a = 0 =⇒ s ∈ A ]}

is a neighborhood base at 0.

The topology is Fréchet because a set A ⊂ [ω]<ω is I positive iff 0 is
in the closure of A . And A ⊂ [ω]<ω has an subsequence converging
to 0 iff there is an infinite pairwise disjoint B ∈ [A ]ω so that
∀a ∈ I [|a ∩ (

⋃
B)| < ω].
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Metrizability of countable Fréchet groups

Question (Gruenhage and Szeptycki)
Is there an uncountable a.d. family A ⊂ [ω]ω such that I(A ) is Fréchet?
Is there a Fréchet ideal I ⊂ P(ω) that is not countably generated?

Theorem (Brendle and Hrusak [1])
It is consistent that no I with fewer than c generators is Fréchet.

My proof uses a modification of the forcing of Brendle and Hrusak.
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The Proof

The big picture:

We assume ♦(S2
1 ) in the ground model and we do a finite support

iteration of σ-centered forcings of length ℵ2.

Given a strongly MAD family A in the final model, there is a club of
ω1 limits of ω2 where the maximality of A reflects.
At a stage α when A is maximal, we do a forcing that adds a set
A ⊂ [ω]<ω with the following two properties:

At no stage β ≥ α is there an almost disjoint A ′ ⊃ A so that A is not
I(A ′) positive.
At no stage β ≥ α is there an almost disjoint A ′ ⊃ A so that there are
a ∈ A ′ and infinite set B ∈ [A ]ω so that

⋃
B ⊂ a.

The second requirement was met by the Brendle-Hrusak forcing.
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The Proof

Suppose A is a MAD family (something weaker than maximality
suffices). Then I+(A ) is a selective coideal. Choose a selective
ultrafilterU ⊂ I+(A ).

For s ∈ FIN = [ω]ω \ {0}, cone (s) = {t ∈ FIN : s ⊂ t}. We define

G = {A ⊂ FIN : ∀b ∈ U∃s ∈ FIN (b) [cone (s) ⊂ A ]}.

It is easy to check that G is a filter on FIN . The forcing is P = L(G ).

P adds a sequence X : ω→ FIN . By genericity ran (X) is I(A )
positive and for all a ∈ A , ∀∞n ∈ ω [X(n) 1 a].
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The Proof

We also need to show:

For all a0, . . . , ak ∈ A , and for all b ∈ V [G] with the property that for
any n ∈ ω, if X(n) ∩ (a0 ∪ · · · ∪ ak ) = 0, then b ∩ X(n) , 0, there is
a ∈ A such that |b ∩ a | = ω

For all infinite B ∈ [ran (X)]ω that is in V [G], there is a ∈ A such that
|a ∩ (

⋃
B)| = ω.

We also need to make sure that these properties are preserved by
the iteration. For this we need to strengthen the properties.

Lemma

Suppose {Ån : n ∈ ω} ⊂ VP so that for each n ∈ ω, 
 Ån ∈
[
ran (X̊)

]ω
. Then

there is a ∈ A such that for all n ∈ ω, 

∣∣∣∣a ∩ (⋃ Ån

)∣∣∣∣ = ω.

Dilip Raghavan A model with no strongly separable MAD families



Background
Some connections

The Proof
Bibliography

The Proof

We also need to show:

For all a0, . . . , ak ∈ A , and for all b ∈ V [G] with the property that for
any n ∈ ω, if X(n) ∩ (a0 ∪ · · · ∪ ak ) = 0, then b ∩ X(n) , 0, there is
a ∈ A such that |b ∩ a | = ω

For all infinite B ∈ [ran (X)]ω that is in V [G], there is a ∈ A such that
|a ∩ (

⋃
B)| = ω.

We also need to make sure that these properties are preserved by
the iteration. For this we need to strengthen the properties.

Lemma
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The Proof

Lemma
Let {ån : n ∈ ω} ⊂ VP and let a0, . . . , ak ∈ A . Assume that for all n,m ∈ ω,

 X̊(m) ∩ (a0 ∪ · · · ∪ ak ) = 0 =⇒ X̊(m) ∩ ån , 0. Then there is
a ∈ A \ {a0, . . . , ak } such that for all n ∈ ω, 


∣∣∣a ∩ ån
∣∣∣ = ω.

The proof uses Ramsey theory.

Lemma

Let F : FIN→ ω such that for every s ∈ FIN, F(s) ∈ s. Then there is a set
b ∈ [ω]ω such that either (1) or (2) holds:

1 ∀s ∈ FIN (b)∀c ∈ [b/s]ω∃t < c [t , 0 ∧ F(s ∪ t) ∈ t]
2 ∀c ∈ [b]ω∃s < c

[
s , 0 ∧ ∀t ∈ [b/s]<ω [F(s ∪ t ∈ s)]

]
.
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The Proof

Put b = ω \ (a0 ∪ · · · ∪ ak ) ∈ U.

Fix σ ∈ (FIN)<ω and n ∈ ω. We may define a function
F〈σ,n〉 : FIN (b)→ b by F〈σ,n〉(s) is the least k ∈ s so that
¬∃q ∈ P

[
stem (q) = σ^〈s〉 ∧ q 
 k < ån

]
We can find b〈σ,n〉 ∈ U ∩ [b]ω which satisfies either (1) or (2)

There is a ∈ A \ {a0, . . . , ak } so that ∀〈σ, n〉
[∣∣∣a ∩ b〈σ,n〉

∣∣∣ = ω]. This is
the a we want.

Suppose, for a contradiction, that there is n ∈ ω, and p ∈ P and m ∈ ω
so that p 
 a ∩ ån ⊂ m. Put σ = stem (p).
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so that p 
 a ∩ ån ⊂ m. Put σ = stem (p).
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The Proof

Put b = ω \ (a0 ∪ · · · ∪ ak ) ∈ U.

Fix σ ∈ (FIN)<ω and n ∈ ω. We may define a function
F〈σ,n〉 : FIN (b)→ b by F〈σ,n〉(s) is the least k ∈ s so that
¬∃q ∈ P

[
stem (q) = σ^〈s〉 ∧ q 
 k < ån

]
We can find b〈σ,n〉 ∈ U ∩ [b]ω which satisfies either (1) or (2)

There is a ∈ A \ {a0, . . . , ak } so that ∀〈σ, n〉
[∣∣∣a ∩ b〈σ,n〉

∣∣∣ = ω]. This is
the a we want.

Suppose, for a contradiction, that there is n ∈ ω, and p ∈ P and m ∈ ω
so that p 
 a ∩ ån ⊂ m. Put σ = stem (p).
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Questions

Conjecture
A further modification of the approach will prove the consistency of “for
every uncountable a.d. family A , I(A ) is not Fréchet”.
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