A model with no strongly separable MAD families

Dilip Raghavan

University of Toronto

Workshop on Combinatorial set theory and forcing theory Kyoto University November 19, 2009

4 日 ト 4 同 ト 4 三 ト 4 三 ト

Dilip Raghavan A model with no strongly separable MAD families

イロト イロト イヨト イヨト

Basic Definitions

- We say that two infinite subsets a and b of ω are almost disjoint or a.d. if a ∩ b is finite.
- We say that a family 𝒜 ⊂ [ω]^ω is almost disjoint or a.d. if its members are pairwise almost disjoint.
- A *Maximal Almost Disjoint family, or MAD family* is an infinite a.d. family that is not properly contained in a larger a.d. family.

Basic Definitions

- We say that two infinite subsets a and b of ω are almost disjoint or a.d. if a ∩ b is finite.
- We say that a family 𝖉 ⊂ [ω]^ω is almost disjoint or a.d. if its members are pairwise almost disjoint.
- A *Maximal Almost Disjoint family, or MAD family* is an infinite a.d. family that is not properly contained in a larger a.d. family.
- If A ⊂ [ω]^ω is an a.d. family, then I(A) denotes the ideal on ω generated by A.

イロト 不得 トイヨト イヨト 三日

Completely Separable MAD families

Definition

An almost disjoint family \mathscr{A} is said to be completely separable if for any $b \in \mathcal{I}^+(\mathscr{A})$, there is an $a \in \mathscr{A}$ with $a \subset b$

Completely Separable MAD families

Definition

An almost disjoint family \mathscr{A} is said to be completely separable if for any $b \in \mathcal{I}^+(\mathscr{A})$, there is an $a \in \mathscr{A}$ with $a \subset b$

Their existence is connected to the existence of ADRs:

Definition

Given $\mathscr{C} \subset [\omega]^{\omega}$, we say that a family $\mathscr{A} = \{a_c : c \in \mathscr{C}\} \subset [\omega]^{\omega}$ is an almost disjoint refinement (ADR) of \mathscr{C} if

•
$$\forall c \in \mathscr{C} [a_c \subset c]$$

• $\forall c_0, c_1 \in \mathscr{C} [c_0 \neq c_1 \implies |a_{c_0} \cap a_{c_1}| < \omega].$

Completely Separable MAD families

Facts:

- If $\mathscr{C} \subset [\omega]^{\omega}$ has an ADR, then there is dense ideal \mathcal{I} such that $\mathcal{I} \cap \mathscr{C} = 0$.
- *I*⁺ has an ADR for every dense *I* iff for every dense *I*, there is a completely separable *A* ⊂ *I*.
- If A is completely separable, then for every b ∈ I⁺(A), there are c many a ∈ A such that a ⊂ b.

Completely Separable MAD families

Facts:

- If $\mathscr{C} \subset [\omega]^{\omega}$ has an ADR, then there is dense ideal \mathcal{I} such that $\mathcal{I} \cap \mathscr{C} = 0$.
- *I*⁺ has an ADR for every dense *I* iff for every dense *I*, there is a completely separable *A* ⊂ *I*.
- If A is completely separable, then for every b ∈ I⁺(A), there are c many a ∈ A such that a ⊂ b.

Question (Erdos-Shelah)

Is there a completely separable MAD family $\mathscr{A} \subset [\omega]^{\omega}$? Is there a completely separable MAD $\mathscr{A} \subset I$ for each dense I?

イロト イポト イヨト イヨト

Completely Separable MAD families

- Easy to see that answer is 'yes' if α = c
- (Balcar, Simon, Vojtas): Yes if any one of these holds: s = ω₁, b = δ, or δ ≤ α
- (Balcar, Vojtas): Every non-principal ultrafilter has an ADR.

Completely Separable MAD families

- Easy to see that answer is 'yes' if a = c
- (Balcar, Simon, Vojtas): Yes if any one of these holds: s = ω₁, b = b, or b ≤ a
- (Balcar, Vojtas): Every non-principal ultrafilter has an ADR.

Theorem (Shelah [2])

If $c < \aleph_{\omega}$, then the answer is yes.

Strongly Separable MAD families

There are several possible definitions. Let us rephrase the definition of completely separable MAD families:

Definition

Given an ideal $I \subset \mathcal{P}(\omega)$, let us say that a set $A \subset [\omega]^{<\omega}$ is I-positive if for every $a \in I$, $\exists s \in A \ [s \cap a = 0]$.

A set $a \in \mathcal{P}(\omega)$ is in \mathcal{I}^+ iff $\{\{n\} : n \in a\}$ is \mathcal{I} -positive.

Strongly Separable MAD families

There are several possible definitions. Let us rephrase the definition of completely separable MAD families:

Definition

Given an ideal $I \subset \mathcal{P}(\omega)$, let us say that a set $A \subset [\omega]^{<\omega}$ is I-positive if for every $a \in I$, $\exists s \in A \ [s \cap a = 0]$.

A set $a \in \mathcal{P}(\omega)$ is in \mathcal{I}^+ iff $\{\{n\} : n \in a\}$ is \mathcal{I} -positive.

So \mathscr{A} is completely separable iff for every $I(\mathscr{A})$ positive set $A \subset [\omega]^{<\omega}$ consisting entirely of singletons, there are \mathfrak{c} many $a \in \mathscr{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B = a$.

Strongly Separable MAD families

Steprans-Shelah definition: for every $I(\mathscr{A})$ positive set $A \subset [\omega]^{<\omega}$, there are \mathfrak{c} many $a \in \mathscr{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

イロト 不得 トイヨト イヨト 三日

Strongly Separable MAD families

Steprans-Shelah definition: for every $I(\mathscr{A})$ positive set $A \subset [\omega]^{<\omega}$, there are \mathfrak{c} many $a \in \mathscr{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

They applied this to the Calkin Algebra, $\mathscr{C}(\mathbb{H}) = \mathscr{B}(\mathbb{H})/\mathscr{K}(\mathbb{H})$.

Definition

A masa in a C^* algebra is a maximal, abelian, self adjoint subalgebra (C^* subalgebra).

Strongly Separable MAD families

Steprans-Shelah definition: for every $I(\mathscr{A})$ positive set $A \subset [\omega]^{<\omega}$, there are \mathfrak{c} many $a \in \mathscr{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

They applied this to the Calkin Algebra, $\mathscr{C}(\mathbb{H}) = \mathscr{B}(\mathbb{H})/\mathscr{K}(\mathbb{H})$.

Definition

A masa in a C^* algebra is a maximal, abelian, self adjoint subalgebra (C^* subalgebra).

Theorem (Steprans and Shelah [3])

If there is a strongly separable MAD family (in their sense), then there is a masa in $\mathscr{C}(\mathbb{H})$ that is generated by its projections, and does not lift to a masa in $\mathscr{B}(\mathbb{H})$.

Strongly Separable MAD families

Question (Steprans and Shelah)

Is there a strongly separable MAD family (in their sense)? Is there one with the property that for every $\mathcal{I}(\mathscr{A})$ positive set $A \subset [\omega]^{<\omega}$, there is at least one $a \in \mathscr{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$? Can one be constructed if $\mathfrak{c} < \aleph_{\omega}$?

Strongly Separable MAD families

Question (Steprans and Shelah)

Is there a strongly separable MAD family (in their sense)? Is there one with the property that for every $\mathcal{I}(\mathscr{A})$ positive set $A \subset [\omega]^{<\omega}$, there is at least one $a \in \mathscr{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$? Can one be constructed if $\mathfrak{c} < \aleph_{\omega}$?

Definition

An a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ is strongly separable if for every $I(\mathscr{A})$ positive $A \subset [\omega]^{<\omega}$ there is an $a \in \mathscr{A}$ such that there is an infinite $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

Strongly Separable MAD families

Question (Steprans and Shelah)

Is there a strongly separable MAD family (in their sense)? Is there one with the property that for every $\mathcal{I}(\mathscr{A})$ positive set $A \subset [\omega]^{<\omega}$, there is at least one $a \in \mathscr{A}$ such that there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\bigcup B \subset a$? Can one be constructed if $\mathfrak{c} < \aleph_{\omega}$?

Definition

An a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ is *strongly separable* if for every $I(\mathscr{A})$ positive $A \subset [\omega]^{<\omega}$ there is an $a \in \mathscr{A}$ such that there is an infinite $B \in [A]^{\omega}$ so that $\bigcup B \subset a$.

Theorem (R.)

It is consistent that there are no strongly separable MAD families.

Metrizability of countable Fréchet groups

Definition

Recall that a topological space X is *Fréchet* if whenever a point $p \in X$ is in the closure of a set $A \subset X$, there is a sequence of points in A converging to p.

4 日 ト 4 同 ト 4 三 ト 4 三 ト

Metrizability of countable Fréchet groups

Definition

Recall that a topological space X is *Fréchet* if whenever a point $p \in X$ is in the closure of a set $A \subset X$, there is a sequence of points in A converging to p.

Question (Malykhin)

Is it consistent that every countable Fréchet group is metrizable?

Metrizability of countable Fréchet groups

Definition

Recall that a topological space X is *Fréchet* if whenever a point $p \in X$ is in the closure of a set $A \subset X$, there is a sequence of points in A converging to p.

Question (Malykhin)

Is it consistent that every countable Fréchet group is metrizable?

Definition

Let us say that an ideal I is *Fréchet* if for every I-positive $A \subset [\omega]^{<\omega}$, there is an infinite pairwise disjoint $B \in [A]^{\omega}$ so that $\forall a \in I [|a \cap (\bigcup B)| < \omega]$.

Metrizability of countable Fréchet groups

If *I* is a Frechet ideal that is not countably generated, then we can define a non-metrizable Fréchet topology on ⟨[ω]^{<ω}, △⟩ by by stipulating that

$$\{A \subset [\omega]^{<\omega} : \exists a \in I \forall s \in [\omega]^{<\omega} [s \cap a = 0 \implies s \in A]\}$$

is a neighborhood base at 0.

Metrizability of countable Fréchet groups

If *I* is a Frechet ideal that is not countably generated, then we can define a non-metrizable Fréchet topology on ⟨[ω]^{<ω}, △⟩ by by stipulating that

 $\{A \subset [\omega]^{<\omega} : \exists a \in I \forall s \in [\omega]^{<\omega} [s \cap a = 0 \implies s \in A]\}$

is a neighborhood base at 0.

The topology is Fréchet because a set A ⊂ [ω]^{<ω} is I positive iff 0 is in the closure of A. And A ⊂ [ω]^{<ω} has an subsequence converging to 0 iff there is an infinite pairwise disjoint B ∈ [A]^ω so that ∀a ∈ I [|a ∩ (∪ B)| < ω].

Metrizability of countable Fréchet groups

Question (Gruenhage and Szeptycki)

Is there an uncountable a.d. family $\mathscr{A} \subset [\omega]^{\omega}$ such that $I(\mathscr{A})$ is Fréchet? Is there a Fréchet ideal $I \subset \mathcal{P}(\omega)$ that is not countably generated?

Theorem (Brendle and Hrusak [1])

It is consistent that no I with fewer than c generators is Fréchet.

My proof uses a modification of the forcing of Brendle and Hrusak.

The Proof

The big picture:

 We assume ◊(S²₁) in the ground model and we do a finite support iteration of *σ*-centered forcings of length ℵ₂.

イロト イポト イヨト イヨト

The Proof

The big picture:

- We assume ◊(S²₁) in the ground model and we do a finite support iteration of *σ*-centered forcings of length ℵ₂.
- Given a strongly MAD family A in the final model, there is a club of ω₁ limits of ω₂ where the maximality of A reflects.

The Proof

The big picture:

- We assume ◊(S²₁) in the ground model and we do a finite support iteration of *σ*-centered forcings of length ℵ₂.
- Given a strongly MAD family A in the final model, there is a club of ω₁ limits of ω₂ where the maximality of A reflects.
- At a stage α when \mathscr{A} is maximal, we do a forcing that adds a set $A \subset [\omega]^{<\omega}$ with the following two properties:
 - At no stage $\beta \ge \alpha$ is there an almost disjoint $\mathscr{A}' \supset \mathscr{A}$ so that A is not $I(\mathscr{A}')$ positive.
 - At no stage β ≥ α is there an almost disjoint A' ⊃ A so that there are a ∈ A' and infinite set B ∈ [A]^ω so that ∪ B ⊂ a.

The second requirement was met by the Brendle-Hrusak forcing.

イロト 不得 トイヨト イヨト 二日

The Proof

- Suppose A is a MAD family (something weaker than maximality suffices). Then I⁺(A) is a selective coideal. Choose a selective ultrafilter U ⊂ I⁺(A).
- For $s \in FIN = [\omega]^{\omega} \setminus \{0\}$, cone $(s) = \{t \in FIN : s \subset t\}$. We define

 $\mathscr{G} = \{ A \subset \mathsf{FIN} : \forall b \in \mathcal{U} \exists s \in \mathsf{FIN}(b) \, [\operatorname{cone}(s) \subset A] \}.$

• It is easy to check that \mathscr{G} is a filter on FIN. The forcing is $\mathbb{P} = \mathbb{L}(\mathscr{G})$.

The Proof

- Suppose A is a MAD family (something weaker than maximality suffices). Then I⁺(A) is a selective coideal. Choose a selective ultrafilter U ⊂ I⁺(A).
- For $s \in FIN = [\omega]^{\omega} \setminus \{0\}$, cone $(s) = \{t \in FIN : s \subset t\}$. We define

 $\mathscr{G} = \{ A \subset \mathsf{FIN} : \forall b \in \mathcal{U} \exists s \in \mathsf{FIN}(b) \, [\operatorname{cone}(s) \subset A] \}.$

- It is easy to check that \mathscr{G} is a filter on FIN. The forcing is $\mathbb{P} = \mathbb{L}(\mathscr{G})$.
- P adds a sequence X : ω → FIN. By genericity ran (X) is I(𝒜) positive and for all a ∈ 𝒜, ∀[∞]n ∈ ω [X(n) ∉ a].

The Proof

We also need to show:

- For all a₀,..., a_k ∈ A, and for all b ∈ V [G] with the property that for any n ∈ ω, if X(n) ∩ (a₀ ∪ ··· ∪ a_k) = 0, then b ∩ X(n) ≠ 0, there is a ∈ A such that |b ∩ a| = ω
- For all infinite $B \in [ran(X)]^{\omega}$ that is in **V** [*G*], there is $a \in \mathscr{A}$ such that $|a \cap (\bigcup B)| = \omega$.

The Proof

We also need to show:

- For all a₀,..., a_k ∈ A, and for all b ∈ V [G] with the property that for any n ∈ ω, if X(n) ∩ (a₀ ∪ ··· ∪ a_k) = 0, then b ∩ X(n) ≠ 0, there is a ∈ A such that |b ∩ a| = ω
- For all infinite $B \in [ran(X)]^{\omega}$ that is in **V** [*G*], there is $a \in \mathscr{A}$ such that $|a \cap (\bigcup B)| = \omega$.
- We also need to make sure that these properties are preserved by the iteration. For this we need to strengthen the properties.

The Proof

We also need to show:

- For all a₀,..., a_k ∈ A, and for all b ∈ V [G] with the property that for any n ∈ ω, if X(n) ∩ (a₀ ∪ ··· ∪ a_k) = 0, then b ∩ X(n) ≠ 0, there is a ∈ A such that |b ∩ a| = ω
- For all infinite $B \in [ran(X)]^{\omega}$ that is in **V** [*G*], there is $a \in \mathscr{A}$ such that $|a \cap (\bigcup B)| = \omega$.
- We also need to make sure that these properties are preserved by the iteration. For this we need to strengthen the properties.

Lemma

Suppose $\{\mathring{A}_n : n \in \omega\} \subset \mathbf{V}^{\mathbb{P}}$ so that for each $n \in \omega, \mathbb{H} \mathring{A}_n \in [\operatorname{ran}(\mathring{X})]^{\omega}$. Then there is $a \in \mathscr{A}$ such that for all $n \in \omega, \mathbb{H} |a \cap (\bigcup \mathring{A}_n)| = \omega$.

The Proof

Lemma

Let $\{a_n : n \in \omega\} \subset \mathbf{V}^{\mathbb{P}}$ and let $a_0, \ldots, a_k \in \mathscr{A}$. Assume that for all $n, m \in \omega$, $\Vdash \mathring{X}(m) \cap (a_0 \cup \cdots \cup a_k) = 0 \implies \mathring{X}(m) \cap \mathring{a}_n \neq 0$. Then there is $a \in \mathscr{A} \setminus \{a_0, \ldots, a_k\}$ such that for all $n \in \omega$, $\Vdash |a \cap \mathring{a}_n| = \omega$.

The Proof

Lemma

Let $\{a_n : n \in \omega\} \subset \mathbf{V}^{\mathbb{P}}$ and let $a_0, \ldots, a_k \in \mathscr{A}$. Assume that for all $n, m \in \omega$, $\Vdash \mathring{X}(m) \cap (a_0 \cup \cdots \cup a_k) = 0 \implies \mathring{X}(m) \cap \mathring{a}_n \neq 0$. Then there is $a \in \mathscr{A} \setminus \{a_0, \ldots, a_k\}$ such that for all $n \in \omega$, $\Vdash |a \cap \mathring{a}_n| = \omega$.

The proof uses Ramsey theory.

Lemma

Let $F : FIN \to \omega$ such that for every $s \in FIN$, $F(s) \in s$. Then there is a set $b \in [\omega]^{\omega}$ such that either (1) or (2) holds:

The Proof

• Put
$$b = \omega \setminus (a_0 \cup \cdots \cup a_k) \in \mathcal{U}$$
.

Dilip Raghavan A model with no strongly separable MAD families

イロト 不得 トイヨト イヨト

-2

The Proof

- Put $b = \omega \setminus (a_0 \cup \cdots \cup a_k) \in \mathcal{U}$.
- Fix $\sigma \in (FIN)^{<\omega}$ and $n \in \omega$. We may define a function $F_{\langle \sigma, n \rangle} : FIN(b) \rightarrow b$ by $F_{\langle \sigma, n \rangle}(s)$ is the least $k \in s$ so that $\neg \exists q \in \mathbb{P} [\text{stem}(q) = \sigma^{\frown} \langle s \rangle \land q \Vdash k \notin a_n]$

The Proof

- Put $b = \omega \setminus (a_0 \cup \cdots \cup a_k) \in \mathcal{U}$.
- Fix $\sigma \in (FIN)^{<\omega}$ and $n \in \omega$. We may define a function $F_{\langle \sigma, n \rangle} : FIN(b) \to b$ by $F_{\langle \sigma, n \rangle}(s)$ is the least $k \in s$ so that $\neg \exists q \in \mathbb{P} [\text{stem}(q) = \sigma^{\frown} \langle s \rangle \land q \Vdash k \notin a_n]$
- We can find $b_{\langle \sigma,n\rangle} \in \mathcal{U} \cap [b]^{\omega}$ which satisfies either (1) or (2)
- There is a ∈ A \ {a₀,..., a_k} so that ∀⟨σ, n⟩ [|a ∩ b_{⟨σ,n⟩}| = ω]. This is the a we want.

The Proof

- Put $b = \omega \setminus (a_0 \cup \cdots \cup a_k) \in \mathcal{U}$.
- Fix $\sigma \in (FIN)^{<\omega}$ and $n \in \omega$. We may define a function $F_{\langle \sigma, n \rangle} : FIN(b) \rightarrow b$ by $F_{\langle \sigma, n \rangle}(s)$ is the least $k \in s$ so that $\neg \exists q \in \mathbb{P} [\text{stem}(q) = \sigma^{\frown} \langle s \rangle \land q \Vdash k \notin a_n]$
- We can find $b_{\langle \sigma,n\rangle} \in \mathcal{U} \cap [b]^{\omega}$ which satisfies either (1) or (2)
- There is a ∈ A \ {a₀,..., a_k} so that ∀⟨σ, n⟩ [|a ∩ b_{⟨σ,n⟩}| = ω]. This is the a we want.
- Suppose, for a contradiction, that there is *n* ∈ ω, and *p* ∈ ℙ and *m* ∈ ω so that *p* ⊩ *a* ∩ å_n ⊂ *m*. Put σ = stem (*p*).

Questions

Conjecture

A further modification of the approach will prove the consistency of "for every uncountable a.d. family \mathscr{A} , $\mathcal{I}(\mathscr{A})$ is not Fréchet".

イロト イポト イヨト イヨト

Bibliography

- J. Brendle and M. Hrušák, *Countable Fréchet boolean groups: An independence result*, J. Symbolic Logic (to appear).
- S. Shelah, *Mad families and sane player*, preprint, 0904.0816.
- S. Shelah and J. Steprāns, *Masas in the calkin algebra without the continuum hypothesis*, Canadian Mathematical Bulletin.

4 日 ト 4 同 ト 4 三 ト 4 三 ト