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Regularity properties for sets of reals
(Lebesgue measurability, Baire property, Ramsey property, Marczewski measurability)

True for Borel sets

True for analytic sets

False for all sets (AC)

∆
1
2/Σ

1
2? Independent of ZFC

False if V = L.
True if L[a] ∩ ωω is countable for all a ∈ ωω.
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Regularity Properties

Regularity properties for sets of reals
(Lebesgue measurability, Baire property, Ramsey property, Marczewski measurability)

True for Borel sets

True for analytic sets

False for all sets (AC)

∆
1
2/Σ

1
2? Independent of ZFC

False if V = L.
True if L[a] ∩ ωω is countable for all a ∈ ωω.

“More regularity on ∆
1
2/Σ

1
2-level ∝ L gets smaller”

Polarized Partition Properties on the Second Level of theProjective Hierarchy. – p. 2/37



Examples

1. ∆
1
2(Lebesgue) ⇐⇒ ∀a ∃ random-generic/L[a]

2. ∆
1
2(Baire Property) ⇐⇒ ∀a ∃ Cohen-generic/L[a]
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Examples

1. ∆
1
2(Lebesgue) ⇐⇒ ∀a ∃ random-generic/L[a]

2. ∆
1
2(Baire Property) ⇐⇒ ∀a ∃ Cohen-generic/L[a]

3. ∆
1
2(Ramsey) ⇐⇒ ∀a ∃ Ramsey real /L[a]

4. ∆
1
2(Laver) ⇐⇒ ∀a ∃ dominating real /L[a]

5. ∆
1
2(Miller) ⇐⇒ ∀a ∃ unbounded real /L[a]

6. ∆
1
2(Sacks) ⇐⇒ ∀a ∃ real /∈ L[a]

Where

• x ∈ [ω]ω is Ramsey over L[a] if for all A ⊆ [ω]2 ∩ L[a] ∃n s.t. [x \ n]2 ⊆ A or
[x \ n]2 ⊆ ([ω]2 \A)

• x ∈ ωω is dominating over L[a] if ∀y ∈ ωω ∩ L[a] ∀∞n(y(n) < x(n))

• x ∈ ωω is unbounded over L[a] if ∀y ∈ ωω ∩ L[a] ∃∞n(y(n) < x(n))
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Examples

1. Σ
1
2(Lebesgue) ⇐⇒ ∀a ∃ measure-one set of

random-generics/L[a]

2. Σ
1
2(Baire Property) ⇐⇒ ∀a ∃ comeager set of

Cohen-generic/L[a]
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(Non-)implications

Given two regularity properties: Reg1 and Reg2, we are
interested in:

Γ1(Reg1) =⇒ Γ2(Reg2)?

for Γ1,Γ2 ∈ {∆1
2,Σ

1
2}
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Given two regularity properties: Reg1 and Reg2, we are
interested in:

Γ1(Reg1) =⇒ Γ2(Reg2)?

for Γ1,Γ2 ∈ {∆1
2,Σ

1
2}

Positive answer: find a ZFC-proof

Negative answer: find a model M s.t. M |= Γ1(Reg1)
but M |= ¬Γ2(Reg2)
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(Non-)implications

Given two regularity properties: Reg1 and Reg2, we are
interested in:

Γ1(Reg1) =⇒ Γ2(Reg2)?

for Γ1,Γ2 ∈ {∆1
2,Σ

1
2}

Positive answer: find a ZFC-proof

Negative answer: find a model M s.t. M |= Γ1(Reg1)
but M |= ¬Γ2(Reg2)

What has been established so far?
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Diagram of implications

Diagram: Brendle & Löwe, Eventually different functions and inaccessible cardinals
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Some general theorems

Theorem (Ikegami, 2008) Let P be a proper, tree-like forcing on ωω, and IP a canonical
σ-ideal such that P ↪→d BOREL(ωω)/IP. Moreover suppose that the membership of Borel
sets in IP is a Σ

1
2 property. Call a set A P-measurable if

∀p ∃q ≤ p ([q] ⊆∗ A ∨ [q] ⊆∗ ωω \A)

Then T.F.A.E.

1. ∆
1
2(P-measurability)

2. Σ
1
3-P-absoluteness

3. ∀a ∃x quasi-IP-generic over L[a]

where x is quasi-IP-generic over M if x /∈ B for all Borel sets B ∈ IP, coded in M .
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2 property. Call a set A P-measurable if

∀p ∃q ≤ p ([q] ⊆∗ A ∨ [q] ⊆∗ ωω \A)

Then T.F.A.E.

1. ∆
1
2(P-measurability)

2. Σ
1
3-P-absoluteness

3. ∀a ∃x quasi-IP-generic over L[a]

where x is quasi-IP-generic over M if x /∈ B for all Borel sets B ∈ IP, coded in M .

Theorem (Ikegami, 2008) With additional (technical) assumptions on the ideal IP, T.F.A.E.

1. Σ
1
2(P-measurability)

2. ∀a ∃co-IP set of quasi-IP-generics over L[a]
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Polarized Partitions

Definition. Letters H, J etc. will denote infinite sequences of finite subsets of ω, i.e.
H : ω −→ [ω]<ω . Use abbreviation: [H] =

∏

i∈ω H(i).
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(unbounded polarized partition) if

∃H s.t. ∀i |H(i)| = mi and [H] ⊆ A or [H] ∩A = ∅

• A set/partition A ⊆ ωω satisfies the property
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(bounded polarized partition) if

∃H s.t. ∀i |H(i)| = mi and H(i) ⊆ ni and [H] ⊆ A or [H] ∩A = ∅

and n1, n2, . . . are recursive in m1,m2, . . . .
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Polarized Partitions

Polarized partition properties have been studied by Henle,
Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:
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Polarized Partitions

Polarized partition properties have been studied by Henle,
Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1. In order for (~n → ~m) to hold even for very simple
partitions, ~n � ~m.

2. Γ(~n → ~m) =⇒ Γ(~ω → ~m).

3. Γ(~ω → ~m) ⇐⇒ Γ(~ω → ~m′), for all m,m′ ≥ 2.

If Γ(~n → ~m), then for every other ~m′ there is ~n′ such that
Γ(~n′ → ~m′)
Use coding function ϕ(x) := 〈〈x(0), . . . , x(i1)〉 , 〈x(i1 + 1), . . . , x(i1 + i2)〉 , . . . 〉.
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Polarized Partitions

Polarized partition properties have been studied by Henle,
Llopis, DiPrisco, Todorčević and Zapletal.

Easy observations:

1. In order for (~n → ~m) to hold even for very simple
partitions, ~n � ~m.

2. Γ(~n → ~m) =⇒ Γ(~ω → ~m).

3. Γ(~ω → ~m) ⇐⇒ Γ(~ω → ~m′), for all m,m′ ≥ 2.

If Γ(~n → ~m), then for every other ~m′ there is ~n′ such that
Γ(~n′ → ~m′)
Use coding function ϕ(x) := 〈〈x(0), . . . , x(i1)〉 , 〈x(i1 + 1), . . . , x(i1 + i2)〉 , . . . 〉.

From now on, use generic notations (~ω → ~m) and (~n → ~m).
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Polarized Partitions

In [DiPrisco & Todorčević, 2003]:

(~ω → ~m) and (~n → ~m) hold for analytic sets.

Explicit bounds ~n computed from ~m (using
Ackermann-like function).
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(~ω → ~m) and (~n → ~m) hold for analytic sets.

Explicit bounds ~n computed from ~m (using
Ackermann-like function).

On the other hand, easy to find counterexample using AC
(i.e. well-ordering of ωω).
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Polarized Partitions

In [DiPrisco & Todorčević, 2003]:

(~ω → ~m) and (~n → ~m) hold for analytic sets.

Explicit bounds ~n computed from ~m (using
Ackermann-like function).

On the other hand, easy to find counterexample using AC
(i.e. well-ordering of ωω).

So, what about ∆
1
2/Σ

1
2(~ω → ~m) and ∆

1
2/Σ

1
2(~n → ~m)?
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Upper bound

Fact. Γ(Ramsey) =⇒ Γ(~ω → ~m).

Proof. Given A, let X ∈ ω↑ω be homogeneous for A ∩ ω↑ω . Then divide ran(X) into

X0, X1, . . . such that |Xi| = mi. Now H := 〈X0, X1, . . . 〉 witnesses that A satisfies

(~ω → ~m).
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Eventually different reals

Theorem. (Brendle) If ∆
1
2(~ω → ~m) then ∀a there is an

eventually different real over L[a].
i.e. an x such that ∀y ∈ ωω ∩ L[a] ∀∞n (x(n) 6= y(n))
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Theorem. (Brendle) If ∆
1
2(~ω → ~m) then ∀a there is an

eventually different real over L[a].
i.e. an x such that ∀y ∈ ωω ∩ L[a] ∀∞n (x(n) 6= y(n))

Proof.

• Suppose not, fix a such that ∀x ∃y ∈ L[a] s.t. ∃∞n (x(n) = y(n)).
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Proof.

• Suppose not, fix a such that ∀x ∃y ∈ L[a] s.t. ∃∞n (x(n) = y(n)).

• W.l.o.g., assume that ∀x ∃y ∈ L[a] s.t. ∃∞n [x(n) = y(n) & x(n+ 1) = y(n+ 1)].
Let yx denote the <L[a]-least such real.
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• W.l.o.g., assume that ∀x ∃y ∈ L[a] s.t. ∃∞n [x(n) = y(n) & x(n+ 1) = y(n+ 1)].
Let yx denote the <L[a]-least such real.

• Let A := {x | first n at which x(n) = yx(n) is even}. This is ∆1
2(a) using the fact that

<L[a] is ∆1
2(a).
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i.e. an x such that ∀y ∈ ωω ∩ L[a] ∀∞n (x(n) 6= y(n))

Proof.

• Suppose not, fix a such that ∀x ∃y ∈ L[a] s.t. ∃∞n (x(n) = y(n)).

• W.l.o.g., assume that ∀x ∃y ∈ L[a] s.t. ∃∞n [x(n) = y(n) & x(n+ 1) = y(n+ 1)].
Let yx denote the <L[a]-least such real.

• Let A := {x | first n at which x(n) = yx(n) is even}. This is ∆1
2(a) using the fact that

<L[a] is ∆1
2(a).

• Let H be homogeneous for A, w.l.o.g. [H] ⊆ A. But if x ∈ [H] then let us change
finitely many digits of x to produce a new real x′, such that the first n at which
x′(n) = yx(n) is odd but still x′ ∈ [H]. It is easy to see that yx = yx′ , hence x′ /∈ A:
contradiction.
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Mathias model

Theorem. (Brendle-Kh) Let LRω1 be the Mathias model, i.e.,
the ω1-iteration with countable support of Mathias forcing
starting from L. Then LRω1 |= ∆

1
2(Ramsey) but ¬∆

1
2(~n → ~m).
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• Clearly ∆
1
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the ω1-iteration with countable support of Mathias forcing
starting from L. Then LRω1 |= ∆

1
2(Ramsey) but ¬∆

1
2(~n → ~m).

Proof

• Clearly ∆
1
2(Ramsey) holds in LRω1 .

• Let C := {S : ω −→ [ω]<ω | ∀i|S(i)| ≤ 2i}. Mathias forcing satisfies the Laver
property : For every y ∈M ∩ ωω and ẋ s.t.  ∀i ẋ(i) ≤ y(i), there is an S ∈ C ∩M s.t.
 ∀i ẋ(i) ∈ S(i).
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• Use the ∆
1
2-well-ordering of L ∩ ωω to define a ∆

1
2-well-ordering of L ∩ C.

Polarized Partition Properties on the Second Level of theProjective Hierarchy. – p. 17/37



Mathias model

Theorem. (Brendle-Kh) Let LRω1 be the Mathias model, i.e.,
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Proof

• Clearly ∆
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2(Ramsey) holds in LRω1 .

• Let C := {S : ω −→ [ω]<ω | ∀i|S(i)| ≤ 2i}. Mathias forcing satisfies the Laver
property : For every y ∈M ∩ ωω and ẋ s.t.  ∀i ẋ(i) ≤ y(i), there is an S ∈ C ∩M s.t.
 ∀i ẋ(i) ∈ S(i).

• Use the ∆
1
2-well-ordering of L ∩ ωω to define a ∆

1
2-well-ordering of L ∩ C.

• Use that to define a ∆
1
2 set A which explicitly violates (~n→ ~m), where the mi grow

faster then 2i. This set is well-defined because of the Laver property.
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Polarized Partition Properties on the Second Level of theProjective Hierarchy. – p. 18/37



Diagram of implications

Polarized Partition Properties on the Second Level of theProjective Hierarchy. – p. 18/37



A model for ∆
1
2(~n → ~m)

Goal. Force a model in which ∆
1
2(~ω → ~m) is true but

∆
1
2(Ramsey) is false.
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∆
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Stronger. Force a model in which ∆
1
2(~n → ~m) is true but

∆
1
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A model for ∆
1
2(~n → ~m)

Goal. Force a model in which ∆
1
2(~ω → ~m) is true but

∆
1
2(Ramsey) is false.

Stronger. Force a model in which ∆
1
2(~n → ~m) is true but

∆
1
2(Miller) is false.

Which properties must such a forcing have?

1. Proper and ωω-bounding.
for all ẋ there is a y in the ground model and a p s.t. p  ∀n ẋ(n) ≤ y(n).

Polarized Partition Properties on the Second Level of theProjective Hierarchy. – p. 21/37



A model for ∆
1
2(~n → ~m)

Goal. Force a model in which ∆
1
2(~ω → ~m) is true but

∆
1
2(Ramsey) is false.

Stronger. Force a model in which ∆
1
2(~n → ~m) is true but

∆
1
2(Miller) is false.

Which properties must such a forcing have?

1. Proper and ωω-bounding.
for all ẋ there is a y in the ground model and a p s.t. p  ∀n ẋ(n) ≤ y(n).

2. If ∀a there is a generic over L[a], then ∆
1
2(~n → ~m) holds.
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Creature forcing

Such a forcing notion exists!
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Construction of PKSZ:

• At each n, a small εn is given, and we construct a local partial order Pn as follows:
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We shall refer to it as PKSZ.

Construction of PKSZ:

• At each n, a small εn is given, and we construct a local partial order Pn as follows:

- Let F (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ or ‘creatures’ of
the form (c, k) with c ⊆ F (n) and k ∈ ω such that log2(|c|) − k ≥ 1
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We shall refer to it as PKSZ.

Construction of PKSZ:

• At each n, a small εn is given, and we construct a local partial order Pn as follows:

- Let F (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ or ‘creatures’ of
the form (c, k) with c ⊆ F (n) and k ∈ ω such that log2(|c|) − k ≥ 1

- (c′, k′) ≤n (c, k) iff c′ ⊆ c and k′ ≥ k.
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Creature forcing

Such a forcing notion exists!
Creature forcing, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished].
We shall refer to it as PKSZ.

Construction of PKSZ:

• At each n, a small εn is given, and we construct a local partial order Pn as follows:

- Let F (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ or ‘creatures’ of
the form (c, k) with c ⊆ F (n) and k ∈ ω such that log2(|c|) − k ≥ 1

- (c′, k′) ≤n (c, k) iff c′ ⊆ c and k′ ≥ k.

• Let an := 21/εn . For each (c, k) ∈ Pn, normn(c, k) := logan
(log2(|c|) − k)
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Creature forcing

Such a forcing notion exists!
Creature forcing, due to [Kellner-Shelah, 2009] and [Shelah-Zapletal, unpublished].
We shall refer to it as PKSZ.

Construction of PKSZ:

• At each n, a small εn is given, and we construct a local partial order Pn as follows:

- Let F (n) ∈ ω be a ‘large’ upper bound. Pn consists of ‘conditions’ or ‘creatures’ of
the form (c, k) with c ⊆ F (n) and k ∈ ω such that log2(|c|) − k ≥ 1

- (c′, k′) ≤n (c, k) iff c′ ⊆ c and k′ ≥ k.

• Let an := 21/εn . For each (c, k) ∈ Pn, normn(c, k) := logan
(log2(|c|) − k)

• If F (n) is large enough, then ∃(c, k) ∈ Pn s.t. normn(c, k) ≥ n.

[To be precise: F (n) ≥ 2((21/εn )n)]
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Creature forcing

Now let PKSZ consist of conditions p such that:
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Now let PKSZ consist of conditions p such that:

• There is stem(p) ∈ ω<ω , ∀n ≥ |stem(p)| : p(n) ∈ Pn and normn(p(n)) → ∞.
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Creature forcing

Now let PKSZ consist of conditions p such that:

• There is stem(p) ∈ ω<ω , ∀n ≥ |stem(p)| : p(n) ∈ Pn and normn(p(n)) → ∞.

• p′ ≤ p iff

- stem(p′) ⊇ stem(p)

- For n with |stem(p)| ≤ n < |stem(p′)| we have p′(n) ∈ first coordinate of p(n)

- For n ≥ |stem(p′)| we have p′(n) ≤n p(n)
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Creature forcing

Now let PKSZ consist of conditions p such that:

• There is stem(p) ∈ ω<ω , ∀n ≥ |stem(p)| : p(n) ∈ Pn and normn(p(n)) → ∞.

• p′ ≤ p iff

- stem(p′) ⊇ stem(p)

- For n with |stem(p)| ≤ n < |stem(p′)| we have p′(n) ∈ first coordinate of p(n)

- For n ≥ |stem(p′)| we have p′(n) ≤n p(n)

Remark: PKSZ adds a generic real, but the generic filter is not determined from the generic
real in the usual way, and PKSZ is not in general representable as BOREL(ωω)/I for a
σ-ideal I.
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Proper and ωω-bounding

Theorem. (Kellner-Shelah, Shelah-Zapletal) If PKSZ is as
above, and moreover

∀n : εn ≤
1

n ·
∏

j<n F (j)

then PKSZ is proper and ωω-bounding.
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Proper and ωω-bounding

Theorem. (Kellner-Shelah, Shelah-Zapletal) If PKSZ is as
above, and moreover

∀n : εn ≤
1

n ·
∏

j<n F (j)

then PKSZ is proper and ωω-bounding.

The proof uses two properties from the general theory of
creature forcings: for each n, Pn satisfies “εn-bigness” and
“εn-halving”.
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Forcing ∆
1
2(~n → ~m)

Theorem. (Brendle-Kh) If for every a there is a
PKSZ-generic over L[a] then ∆

1
2(~m → ~n) holds.
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Forcing ∆
1
2(~n → ~m)

Theorem. (Brendle-Kh) If for every a there is a
PKSZ-generic over L[a] then ∆

1
2(~m → ~n) holds.

Proof

• For p ∈ PKSZ let [p] := {x ∈ ωω | stem(p) ⊆ x and ∀n ≥ |stem(p)| : x(n) ∈ 1st
coordinate of p(n)}.
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PKSZ-generic over L[a] then ∆

1
2(~m → ~n) holds.

Proof

• For p ∈ PKSZ let [p] := {x ∈ ωω | stem(p) ⊆ x and ∀n ≥ |stem(p)| : x(n) ∈ 1st
coordinate of p(n)}.

• PKSZ satisfies pure decision: for every φ and p ∈ PKSZ there is q ≤ p with the same
stem as p s.t. q  φ or q  ¬φ.
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Forcing ∆
1
2(~n → ~m)

Theorem. (Brendle-Kh) If for every a there is a
PKSZ-generic over L[a] then ∆

1
2(~m → ~n) holds.

Proof

• For p ∈ PKSZ let [p] := {x ∈ ωω | stem(p) ⊆ x and ∀n ≥ |stem(p)| : x(n) ∈ 1st
coordinate of p(n)}.

• PKSZ satisfies pure decision: for every φ and p ∈ PKSZ there is q ≤ p with the same
stem as p s.t. q  φ or q  ¬φ.

• Let A ⊆ ωω be a ∆1
2(a)-set, defined by Σ1

2(a) formulas φ and ψ. By downward
Π

1
3-absoluteness, the sentence “∀x (φ(x) ↔ ¬ψ(x))” holds in all generic extensions

of L[a]. Using this fact and pure decision, find a condition p in L[a], with empty stem,
s.t. p  φ(ẋgen) or p  ψ(ẋgen).
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Forcing ∆
1
2(~n → ~m)

Theorem. (Brendle-Kh) If for every a there is a
PKSZ-generic over L[a] then ∆

1
2(~m → ~n) holds.

Proof

• For p ∈ PKSZ let [p] := {x ∈ ωω | stem(p) ⊆ x and ∀n ≥ |stem(p)| : x(n) ∈ 1st
coordinate of p(n)}.

• PKSZ satisfies pure decision: for every φ and p ∈ PKSZ there is q ≤ p with the same
stem as p s.t. q  φ or q  ¬φ.

• Let A ⊆ ωω be a ∆1
2(a)-set, defined by Σ1

2(a) formulas φ and ψ. By downward
Π

1
3-absoluteness, the sentence “∀x (φ(x) ↔ ¬ψ(x))” holds in all generic extensions

of L[a]. Using this fact and pure decision, find a condition p in L[a], with empty stem,
s.t. p  φ(ẋgen) or p  ψ(ẋgen).

• W.l.o.g. assume the former, and work in L[a] from now on. Let M ≺ Hθ be countable
and q ≤ p a (M,PKSZ)-Master condition. By pure decision, q has empty stem as well.
Moreover, every x ∈ [q] is M -generic and by standard absoluteness arguments
[q] ⊆ A follows.
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Forcing ∆
1
2(~n → ~m)

Theorem. (Brendle-Kh) If for every a there is a
PKSZ-generic over L[a] then ∆

1
2(~m → ~n) holds.

Proof

• For p ∈ PKSZ let [p] := {x ∈ ωω | stem(p) ⊆ x and ∀n ≥ |stem(p)| : x(n) ∈ 1st
coordinate of p(n)}.

• PKSZ satisfies pure decision: for every φ and p ∈ PKSZ there is q ≤ p with the same
stem as p s.t. q  φ or q  ¬φ.

• Let A ⊆ ωω be a ∆1
2(a)-set, defined by Σ1

2(a) formulas φ and ψ. By downward
Π

1
3-absoluteness, the sentence “∀x (φ(x) ↔ ¬ψ(x))” holds in all generic extensions

of L[a]. Using this fact and pure decision, find a condition p in L[a], with empty stem,
s.t. p  φ(ẋgen) or p  ψ(ẋgen).

• W.l.o.g. assume the former, and work in L[a] from now on. Let M ≺ Hθ be countable
and q ≤ p a (M,PKSZ)-Master condition. By pure decision, q has empty stem as well.
Moreover, every x ∈ [q] is M -generic and by standard absoluteness arguments
[q] ⊆ A follows.

• Since q has empty stem, it witnesses that A satisfies (~n→ ~m).
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Forcing ∆
1
2(~n → ~m)

Corollary. An ω1-iteration of PKSZ, starting from L, gives a
model in which ∆

1
2(~n → ~m) holds but ∆

1
2(Miller) fails.

Notice that the bounds “~n” have been explicitly computed
beforehand: they are the F (n)’s from the definition of PKSZ.
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Diagram of implications
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Other properties

Definition. A real x ∈ [ω]ω is splitting over M if for all
a ∈ [ω]ω ∩ M , both a ∩ x and a \ x are infinite.
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Other properties

Definition. A real x ∈ [ω]ω is splitting over M if for all
a ∈ [ω]ω ∩ M , both a ∩ x and a \ x are infinite.

Theorem. (Shelah-Zapletal) PKSZ does not add splitting
reals.
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Other properties

Definition. A real x ∈ [ω]ω is splitting over M if for all
a ∈ [ω]ω ∩ M , both a ∩ x and a \ x are infinite.

Theorem. (Shelah-Zapletal) PKSZ does not add splitting
reals.

By another result of Zapletal, the conjunction “ωω-bounding
and not adding splitting reals” is preserved in ω1-iterations,
so:
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Diagram of implications
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Open questions for ∆
1
2

Open questions

1. Is the implication ∆
1
2(~ω → ~m) ⇒ ∃ ev. diff. reals strict?

Conjecture: ∆
1
2(~ω → ~m) fails in the Random model.
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Open questions for ∆
1
2

Open questions

1. Is the implication ∆
1
2(~ω → ~m) ⇒ ∃ ev. diff. reals strict?

Conjecture: ∆
1
2(~ω → ~m) fails in the Random model.

2. Is there a characterization of ∆
1
2(~ω → ~m) and

∆
1
2(~n → ~m) in terms of transcendence over L?
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The property on the Σ
1
2 level

Recall that for Ramsey, Sacks, Miller and Laver
measurability, ∆

1
2 and Σ

1
2 are equivalent.

Question: Are ∆
1
2 and Σ

1
2 equivalent for the polarized

partition properties?
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What we do know

Theorem. If Σ
1
2(~ω → ~m) then ∀a ∃H s.t. ∀x ∈ [H] : x is

eventually different over L[a].
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What we do know

Theorem. If Σ
1
2(~ω → ~m) then ∀a ∃H s.t. ∀x ∈ [H] : x is

eventually different over L[a].

Theorem. In the Mathias model, Σ
1
2(Ramsey) holds while

Σ
1
2(~n → ~m) fails.
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Diagram of implications
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Forcing Σ
1
2(~n → ~m)

Can we extend the result about PKSZ to Σ
1
2?
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Forcing Σ
1
2(~n → ~m)

Can we extend the result about PKSZ to Σ
1
2?

Not a priori, since PKSZ only adds one generic real.
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Forcing Σ
1
2(~n → ~m)

Can we extend the result about PKSZ to Σ
1
2?

Not a priori, since PKSZ only adds one generic real.

[DiPrisco & Todorčević] use a forcing PDPT adding a whole
generic product HG with the following property:

For all Borel sets B in the ground model, (∗)

B ∩ [HG] is relatively clopen in [HG].
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Forcing Σ
1
2(~n → ~m)

Theorem. (Brendle-Kh) An ω1-iteration of PDPT starting
from L give a model where Σ

1
2(~n → ~m) holds.
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Forcing Σ
1
2(~n → ~m)

Theorem. (Brendle-Kh) An ω1-iteration of PDPT starting
from L give a model where Σ

1
2(~n → ~m) holds.

Proof.

• Let A be Σ1
2(a). Using Shoenfield trees, we find a partition A =

⋃

α<ω1
Aα into Borel

sets with codes in L[a].
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Forcing Σ
1
2(~n → ~m)

Theorem. (Brendle-Kh) An ω1-iteration of PDPT starting
from L give a model where Σ

1
2(~n → ~m) holds.

Proof.

• Let A be Σ1
2(a). Using Shoenfield trees, we find a partition A =

⋃

α<ω1
Aα into Borel

sets with codes in L[a].

• Since by the property (∗) of PDPT there is a product H in V s.t. every Aα ∩ [H] is
relatively clopen in [H], by compactness A is a union of finitely many clopen sets (in
[H]) and so it is in fact Borel (in [H]). Then it follows easily that A satisfies (~n→ ~m).
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Theorem. (Brendle-Kh) An ω1-iteration of PDPT starting
from L give a model where Σ

1
2(~n → ~m) holds.

Proof.

• Let A be Σ1
2(a). Using Shoenfield trees, we find a partition A =

⋃

α<ω1
Aα into Borel

sets with codes in L[a].

• Since by the property (∗) of PDPT there is a product H in V s.t. every Aα ∩ [H] is
relatively clopen in [H], by compactness A is a union of finitely many clopen sets (in
[H]) and so it is in fact Borel (in [H]). Then it follows easily that A satisfies (~n→ ~m).
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Forcing Σ
1
2(~n → ~m)

Only problem: it is difficult to see whether PDPT is
ωω-bounding.
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Forcing Σ
1
2(~n → ~m)

Only problem: it is difficult to see whether PDPT is
ωω-bounding.

So instead, we can combine elements of PDPT with PKSZ to
produce a new forcing notion P which is still proper and
ωω-bounding (higher bounds but same idea) and moreover
adds a product with the (∗) property.
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Forcing Σ
1
2(~n → ~m)

Only problem: it is difficult to see whether PDPT is
ωω-bounding.

So instead, we can combine elements of PDPT with PKSZ to
produce a new forcing notion P which is still proper and
ωω-bounding (higher bounds but same idea) and moreover
adds a product with the (∗) property.

Corollary. There is a model where Σ
1
2(~n → ~m) holds but

Σ
1
2(Miller) fails.
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