Lévy collapse and the precipitousness of normal ideals over ω_1

Hiroshi Sakai

November 17, 2009

1. Introduction

<u>Thm.</u> (Foreman-Magidor-Shelah) Let μ be a supercompact cardinal. Then $V^{\text{Col}(\omega_1, <\mu)} \models \text{"NS}_{\omega_1}$ is precipitous".

• $Col(\omega_1, < \mu)$ is the Lévy collapse forcing μ to be ω_2 .

Ishiu proved that ideals naturally defined from tail club guessing sequences are also precipitous in $V^{\text{Col}(\omega_1, <\mu)}$.

Def.

Suppose that $A \subseteq \text{Lim}(\omega_1)$. $\vec{c} = \langle c_{\alpha} \mid \alpha \in A \rangle$ is called a **tail club guessing (t.c.g.)** sequence on A if

(i) c_α is unbounded subset of α of order-type ω,
(ii) For any club C ⊆ ω₁ there exists α ∈ A with c_α ⊆* C, i.e. c_α \ β ⊆ C for some β < α.

Def.

For a t.c.g. sequence $\vec{c} = \langle c_{\alpha} \mid \alpha \in A \rangle$, let

 $\mathsf{TCG}(\vec{c}) := \text{the set of all } A' \subseteq \omega_1 \text{ such that } \vec{c} \mid A' \text{ is not}$ a t.c.g. sequence. $(\vec{c} \mid A' = \langle c_\alpha \mid \alpha \in A \cap A' \rangle)$

- TCG(\vec{c}) is a normal proper ideal over ω_1 for any t.c.g. sequence \vec{c} .
- \diamond holds in $V^{\text{Col}(\omega_1, <\mu)}$. Hence there exists a t.c.g. sequence.
- If \vec{c} is a t.c.g. sequence in $V^{\text{Col}(\omega_1, <\mu)}$, then $\top \text{CG}(\vec{c})$ is not equal to a restriction of NS_{ω_1} .

Thm. (Ishiu)

Let $\boldsymbol{\mu}$ be a supercompact cardinal. Then

 $V^{\text{Col}(\omega_1,<\mu)} \models \text{``TCG}(\vec{c}) \text{ is precipitous for any t.c.g. seq. } \vec{c}$ ''.

Question

How about other ideals over ω_1 ? What kind of ideals become precipitous in $V^{\text{Col}(\omega_1,<\mu)}$?

I do not know much on this question yet. In this talk I will present

- other examples of normal ideals which are precipitous in $V^{\operatorname{Col}(\omega_1,<\mu)}$,
- an example of normal ideal which is not precipitous in $V^{\text{Col}(\omega_1,<\mu)}$.

In the course of presenting examples of precipitous ideals, I also introduce new reflection principles associated to ideals.

2. Examples of precipitous ideals

2.1 ideals which become equal to NS_{ω_1}

÷

The ideals below are equal to NS_{ω_1} in $V^{Col(\omega_1, <\mu)}$. Hence they are precipitous in $V^{Col(\omega_1, <\mu)}$:

- the set of all $A \subseteq \omega_1$ on which a t.c.g. sequence exists
- the set of all $A \subseteq \omega_1$ on which a \diamondsuit -sequence exists

2.2 ideals defined from guessing sequences

example 1: ideals defined from weak club guessing sequences

Def.

Suppose that $A \subseteq \text{Lim}(\omega_1)$.

 $\vec{c} = \langle c_{\alpha} \mid \alpha \in A \rangle$ is called a **weak club guessing (w.c.g.)** sequence on A if

(i) c_α is an unbounded subset of α of order-type ω,
(ii) For any club C ⊆ ω₁ there exists α ∈ A such that c_α ∩ C unbounded in α.

Def.

For a w.c.g. sequence $\vec{c} = \langle c_{\alpha} \mid \alpha \in A \rangle$, let

WCG(\vec{c}) := the set of all $A' \subseteq \omega_1$ such that $\vec{c} \mid A'$ is not a w.c.g. sequence.

- WCG(\vec{c}) is a normal proper ideal over ω_1 for any w.c.g. sequence \vec{c} .
- There exists a w.c.g. sequence in $V^{\text{Col}(\omega_1, <\mu)}$.
- If \vec{c} is a w.c.g. seq. in $V^{\text{Col}(\omega_1, <\mu)}$, then WCG(\vec{c}) differs from restrictions of NS_{ω_1} and TCG(\vec{c}') for any t.c.g. seq. \vec{c}' .

Thm.

Let $\boldsymbol{\mu}$ be a supercompact cardinal. Then

 $V^{\mathsf{Col}(\omega_1,<\mu)} \models "\mathsf{WCG}(\vec{c})$ is precipitous for any w.c.g. seq. \vec{c} ".

example 2: ideals defined from \Diamond' -sequences

For any \diamondsuit -sequence $\vec{b} = \langle b_{\alpha} \mid \alpha \in A \rangle$, "the set of all $A' \subseteq \omega_1$ with $\vec{b} \mid A'$ not a \diamondsuit -sequence" is not an ideal.

For the following variant of \diamondsuit^- the above construction gives normal ideals:

Def.

Suppose that $A \subseteq \omega_1$. $\vec{N} = \langle N_{\alpha} \mid \alpha \in A \rangle$ is called a \diamond' -sequence on A if

(i) N_{α} is a countable transitive model of ZFC⁻, (ii) for any $B \subseteq \omega_1$ the set $\{\alpha \in A \mid B \cap \alpha \in N_{\alpha}\}$ is stationary.

•
$$\diamondsuit' \Leftrightarrow \diamondsuit^- \Leftrightarrow \diamondsuit$$
.

<u>Def.</u> For a \diamond' -sequence $\vec{N} = \langle N_{\alpha} \mid \alpha \in A \rangle$, let $\mathsf{DMD}(\vec{N}) :=$ the set of all $A' \subseteq \omega_1$ such that $\vec{N} \mid A'$ is not a \diamond' -sequence.

- DMD(\vec{N}) is a normal proper ideal over ω_1 for any \diamondsuit' -seq. \vec{N} .
- In $V^{\text{Col}(\omega_1, <\mu)}$ there exists a \diamond' -sequence.
- NS_{ω_1} , $TCG(\vec{c})$ and $WCG(\vec{c})$ are in fact presaturated in $V^{Col(\omega_1, <\mu)}$. But $DMD(\vec{N})$ cannot be presaturated.

<u>Thm.</u>

Let $\boldsymbol{\mu}$ be a supercompact cardinal. Then

 $V^{\mathsf{Col}(\omega_1,<\mu)} \models \text{``DMD}(\vec{N}) \text{ is precipitous for any } \diamond' \text{-seq. } \vec{N} \text{''}.$

Outline of proof of precipitousness

Roughly, the precipitousness of NS_{ω_1}, TCG(\vec{c}), WCG(\vec{c}) and DMD(\vec{N}) can be proved in the same manner. First recall that the precipitousness of NS_{ω_1} follows from the following two facts on the stationary reflection principle (SR):

Def.

 $\mathsf{SR} \equiv \mathsf{For} \text{ any set } W \supseteq \omega_1 \text{ and any stationary } X \subseteq [W]^{\omega},$ there exists $W' \subseteq W$ such that

> (i) $|W'| = \omega_1 \subseteq W$ (ii) $X \cap [W']^{\omega}$ is stationary in $[W']^{\omega}$.

<u>**Fact</u>** (Foreman-Magidor-Shelah) If μ is a supercompact cardinal, then SR holds in $V^{\text{Col}(\omega_1, <\mu)}$.</u>

<u>Fact</u> (Foreman-Magidor-Shelah) SR implies the precipitousness of NS_{ω_1} . Below let I be one of NS_{ω_1} , $TCG(\vec{c})$, $WCG(\vec{c})$ and $DMD(\vec{N})$.

The precipitousness of I can be proved by generalizing the previous facts.

Step1: Define a tower of ideals $\langle I_W | W \supseteq \omega_1 \rangle$ associated with I so that the reflection principle with respect to this tower holds in $V^{\text{Col}(\omega_1, <\mu)}$.

Step2: Prove that the reflection principle with respect to the tower implies the precipitousness of *I*.

- Step1 -

• Step 1 is quite the same for each $I = NS_{\omega_1}, TCG(\vec{c}), WCG(\vec{c}),$ DMD (\vec{N}) . We only use the following property of I:

<u>Lem.1</u>

Every σ -closed forcing preserves *I*-positive sets.

• For each σ -closed poset P let I^P denotes the ideal I defined in V^P .

If
$$I = NS_{\omega_1}$$
, then I^P is $NS_{\omega_1}V^P$.
If $I = DMD(\vec{N})$, then I^P is $DMD(\vec{N})^{V^P}$

• For each set $W \supseteq \omega_1$ define I_W as follows:

$$\begin{split} I_W &:= & \text{the set of all } X \subseteq [W]^{\omega} \text{ such that} \\ & \exists P: \ \sigma\text{-closed poset which forces } |W| = \omega_1, \\ & \exists \pi: \omega_1 \to W: \text{ surjection in } V^P, \\ & \{\alpha \in \omega_1 \mid \pi \text{``} \alpha \in X\} \in I^P. \end{split}$$

Using Lem.1, we can easily prove the following:

<u>Lem.2</u>

$$\begin{split} I_W &= & \text{the set of all } X \subseteq [W]^{\omega} \text{ such that} \\ & \forall P: \ \sigma\text{-closed poset which forces } |W| = \omega_1, \\ & \forall \pi: \omega_1 \to W: \text{ surjection in } V^P, \\ & \{ \alpha \in \omega_1 \mid \pi \text{``} \alpha \in X \} \in I^P. \end{split}$$

<u>Note</u>

If $I = NS_{\omega_1}$, then I_W is the nonstationary ideal over $[W]^{\omega}$.

• The lemmata below naturally follows from the definition and Lem.1 and 2. Below let W be a set $\supseteq \omega_1$:

<u>Lem.3</u>

 I_W is a normal ideal over $[W]^{\omega}$.

 $\frac{\text{Proof of normality}}{\text{Suppose } \{X_a \mid a \in W\} \subseteq I_W.$

Let P be a σ -closed poset forcing $|W| = \omega_1$, and take a surjection $\pi : \omega_1 \to W$ in V^P . Then in V^P ,

$$\{\alpha \in \omega_1 \mid \pi ``\alpha \in \nabla_{a \in W} X_a\} = \nabla_{\beta < \omega_1} \{\alpha \in \omega_1 \mid \pi ``\alpha \in X_{\pi(\beta)}\} \in I^P.$$

Hence $\nabla_{a \in W} X_a \in I_W$.

<u>Lem.4</u>

 I_{ω_1} is essentially equal to I.

Lem.5

 $\langle I_W \mid W \supseteq \omega_1 \rangle$ forms a tower of ideals, i.e. if $\omega_1 \subseteq W \subseteq W'$, then for each $X \subseteq [W]^{\omega}$,

 $X \in I_W \quad \Leftrightarrow \quad \{x' \in [W']^{\omega} \mid x' \cap W \in X\} \in I_{W'}.$

<u>Lem.6</u>

Every σ -closed forcing preserves I_W -positive sets, i.e. for any σ -closed P and any $W \supseteq \omega_1$, if $X \subseteq [W]^{\omega}$ is I_W -positive in V, then X is I_W^P -positive in V^P . • From Lem.6 and the usual generic ultrapower argument, it follows that the reflection principle with respect to the tower holds in $V^{\text{Col}(\omega_1,<\mu)}$:

Def.

 $\begin{aligned} \mathsf{RP}(I) &\equiv \text{ For any set } W \supseteq \omega_1 \text{ and any } I_W \text{-positive } X \subseteq [W]^{\omega}, \\ \text{ there exists } W' \subseteq W \text{ such that} \\ (\mathsf{i}) \ |W'| &= \omega_1 \subseteq W \\ (\mathsf{ii}) \ X \cap [W']^{\omega} \text{ is } I_{W'} \text{-positive.} \end{aligned}$

<u>Note</u> RP(NS $_{\omega_1}$) is equivalent to SR.

Prop.7

If μ is supercompact, then RP(I) holds in $V^{\text{Col}(\omega_1, <\mu)}$.

- Step2 -

The following holds for each $I = NS_{\omega_1}$, $TCG(\vec{c})$, $WCG(\vec{c})$, $DMD(\vec{N})$:

$\frac{\text{Prop.8}}{\text{RP}(I) \text{ implies the precipitousness of } I.$

This can be shown by the catch-your-tail argument for each I. But the proof is slightly different from each other. I do not know a uniform proof of Prop.8.

3. Example of non-precipitous ideal

We show the following:

Prop.9

If μ is an inaccessible cardinal, then there exists a normal non-precipitous ideal over ω_1 in $V^{\text{Col}(\omega_1,<\mu)}$.

• First note that

$$\mathsf{Col}(\omega_1, <\mu) \simeq \mathsf{Col}(\omega_1, <\mu) * \mathsf{Add}(\omega_1, \mu),$$

where $Add(\omega_1, \mu)$ is the countable support product of $Add(\omega_1)$ (= ${}^{<\omega_1}\omega_1$) of length μ .

Moreover $\mu = \omega_2$ and CH holds in $V^{\text{Col}(\omega_1, <\mu)}$.

Hence it suffices to show the following:

Prop.10

Assume CH. Then there exists a normal non-precipitous ideal over ω_1 in $V^{\text{Add}(\omega_1,\omega_2)}$.

• We use canonical functions:

For each $\eta < \omega_2$, take a surjection $\pi_\eta : \omega_1 \to \eta$, and define $h_\eta : \omega_1 \to \omega_1$ as

$$h_{\eta}(\alpha) :=$$
 the order type of π_{η} " α .

We call h_{η} the canonical function for η .

For any normal ideal J over ω_1 , h_η represents η in the generic ultrapower by J.

Outline of Proof of Prop.10

Let G be Add (ω_1, ω_2) -generic filter. We work in M := V[G]. For each $\xi < \omega_2$ let $f_{\xi} : \omega_1 \to \omega_1$ be the ξ -th fnt. added by G.

For each $\xi,\eta<\omega_2$ let

$$A_{\xi,\eta} := \{ \alpha \in \omega_1 \mid f_{\xi}(\alpha) \leq h_{\eta}(\alpha) \},\$$

and let

J := the normal ideal generated by $\{A_{\xi,\eta} \mid \xi, \eta < \omega_2\}$.

(In the generic ultrapower by J, each f_{ξ} represents an ordinal which is greater than all $\eta < \omega_2^M$.)

Then we can prove the following:

- J is a proper ideal.
- ω_2^M is not in the well-founded part of the generic ultrapower by J.

4. Question

4.1 ideals defined from unbounded functions

Let h_{η} be the canonical function for each $\eta < \omega_2$.

- In the proof of Prop.10, each $f = f_{\xi}$ has the property below: "For any $\eta < \omega_2$ the set $\{\alpha \in \omega_1 \mid f(\alpha) > h_{\eta}(\alpha)\}$ is stationary." A (maybe partial) function $f : \omega_1 \to \omega_1$ with this property is said to be **unbounded**.
- \bullet \diamondsuit implies the existence of unbounded functions.

Def.

For an unbounded function $f: \omega_1 \to \omega_1$, let

 $UBD(f) := \text{the normal ideal generated by } \{A_{\eta} \mid \eta < \omega_2\}$ $= \text{the set of all } A \subseteq \omega_1 \text{ with } f \mid A \text{ not unbounded.}$ Here $A_{\eta} = \{\alpha \in \omega_1 \mid f(\alpha) \leq h_{\eta}(\alpha)\}.$

- I do not know whether UBD(f) is precipitous or not in $V^{Col(\omega_1, <\mu)}$.
- As is $DMD(\vec{N})$, UBD(f) cannot be presaturated.
- As in the case of NS_{ω_1} , $TCG(\vec{c})$, $WCG(\vec{c})$ and $DMD(\vec{N})$, we can construct a tower of ideals associated to UBD(f), and can prove that the reflection principle RP(UBD(f))with respect to this tower holds in $V^{Col(\omega_1, <\mu)}$.

But I do not know whether RP(UBD(f)) implies the precipitousness of UBD(f) or not.

Question

Is UBD(f) precipitous in $V^{\text{Col}(\omega_1, <\mu)}$? Does RP(UBD(f)) imply the precipitousness of UBD(f)?

4.2 existence of non-precipitous ideals

It is consistent that every normal ideal over ω_1 is precipitous. In fact, if NS_{ω_1} is saturated, then every normal ideal over ω_1 is a ristriction of NS_{ω_1} to some stationary set. Hence if NS_{ω_1} is saturated, then every normal ideal over ω_1 is precipitous.

Question

In what situation normal non-precipitous ideals over ω_1 exist ?

For example, \diamondsuit implies the existence of normal non-precipitous ideals ?

Thank you very much.