All automorphisms of all Calkin algebras Part III: We actually know very little

Ilijas Farah

York University

RIMS, Kyoto, November 2009

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of C_{\aleph_0} are inner' is independent from ZFC.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of \mathcal{C}_{\aleph_0} are inner' is independent from ZFC.

Theorem (Farah–McKenney–Schimmerling, 2009) TA+MA imply all automorphisms of C_{\aleph_1} are inner.

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of \mathcal{C}_{\aleph_0} are inner' is independent from ZFC.

Theorem (Farah–McKenney–Schimmerling, 2009) TA+MA imply all automorphisms of C_{\aleph_1} are inner. PFA implies all automorphisms of each C_{κ} are inner.

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of \mathcal{C}_{\aleph_0} are inner' is independent from ZFC.

Theorem (Farah–McKenney–Schimmerling, 2009) TA+MA imply all automorphisms of C_{\aleph_1} are inner. PFA implies all automorphisms of each C_{κ} are inner.

Question

Does TA+MA imply all automorphisms of each C_{κ} are inner?

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of \mathcal{C}_{\aleph_0} are inner' is independent from ZFC.

Theorem (Farah–McKenney–Schimmerling, 2009) TA+MA imply all automorphisms of C_{\aleph_1} are inner. PFA implies all automorphisms of each C_{κ} are inner.

Question

Does TA+MA imply all automorphisms of each C_{κ} are inner? Does TA imply all automorphisms of C_{\aleph_1} are inner?

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of C_{\aleph_0} are inner' is independent from ZFC.

Theorem (Farah–McKenney–Schimmerling, 2009) TA+MA imply all automorphisms of C_{\aleph_1} are inner. PFA implies all automorphisms of each C_{κ} are inner.

Question

Does TA+MA imply all automorphisms of each C_{κ} are inner? Does TA imply all automorphisms of C_{\aleph_1} are inner? Does ' C_{\aleph_0} has an outer automorphism' imply ' C_{\aleph_1} has an outer automorphism?'

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of C_{\aleph_0} are inner' is independent from ZFC.

Theorem (Farah–McKenney–Schimmerling, 2009) TA+MA imply all automorphisms of C_{\aleph_1} are inner. PFA implies all automorphisms of each C_{κ} are inner.

Question

Does TA+MA imply all automorphisms of each C_{κ} are inner? Does TA imply all automorphisms of C_{\aleph_1} are inner? Does ' C_{\aleph_0} has an outer automorphism' imply ' C_{\aleph_1} has an outer automorphism?' Does ZFC imply all automorphisms of each C_{κ} , for κ uncountable,

are inner?

Theorem (Phillips-Weaver, Farah, 2007)

The assertion 'all automorphisms of \mathcal{C}_{\aleph_0} are inner' is independent from ZFC.

Theorem (Farah–McKenney–Schimmerling, 2009) TA+MA imply all automorphisms of C_{\aleph_1} are inner.

PFA implies all automorphisms of each C_{κ} are inner.

Question

Does TA+MA imply all automorphisms of each C_{κ} are inner? Does TA imply all automorphisms of C_{\aleph_1} are inner? Does ' C_{\aleph_0} has an outer automorphism' imply ' C_{\aleph_1} has an outer automorphism?' Does ZFC imply all automorphisms of each C_{κ} , for κ uncountable,

are inner?

Remark

 ${}^{\mathcal{C}}_{\aleph_1}$ has an outer automorphism' is a Σ_2^2 statement.

Calkin beyond separable

Lemma

 \mathcal{K}_{\aleph_0} is the unique (norm-closed, two-sided, self-adjoint) ideal of \mathcal{B}_{\aleph_0} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Calkin beyond separable

Lemma

 \mathcal{K}_{\aleph_0} is the unique (norm-closed, two-sided, self-adjoint) ideal of \mathcal{B}_{\aleph_0} .

Lemma

Assume κ is an infinite cardinal. The number of (norm-closed, two-sided, self-adjoint) ideals of \mathcal{B}_{κ} is

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Calkin beyond separable

Lemma

 \mathcal{K}_{\aleph_0} is the unique (norm-closed, two-sided, self-adjoint) ideal of \mathcal{B}_{\aleph_0} .

Lemma

Assume κ is an infinite cardinal. The number of (norm-closed, two-sided, self-adjoint) ideals of \mathcal{B}_{κ} is

 $|\operatorname{Card} \cap [\aleph_0, \kappa]|.$

Calkin beyond separable is not simple anymore!

Lemma

 \mathcal{K}_{\aleph_0} is the unique (norm-closed, two-sided, self-adjoint) ideal of \mathcal{B}_{\aleph_0} .

Lemma

Assume κ is an infinite cardinal. The number of (norm-closed, two-sided, self-adjoint) ideals of \mathcal{B}_{κ} is

 $|\operatorname{Card} \cap [\aleph_0, \kappa]|.$

Calkin beyond separable is not simple anymore!

Lemma

 \mathcal{K}_{\aleph_0} is the unique (norm-closed, two-sided, self-adjoint) ideal of \mathcal{B}_{\aleph_0} .

Lemma

Assume κ is an infinite cardinal. The number of (norm-closed, two-sided, self-adjoint) ideals of \mathcal{B}_{κ} is

 $|\operatorname{Card} \cap [\aleph_0, \kappa]|.$

Proof.

Given an infinite $\lambda \leq \kappa$ we have

$$\mathcal{K}_{\kappa,\lambda} = \overline{\{a: a[\ell_2(\kappa)] \text{ has density } < \lambda\}}.$$

A curiosity

It is an open problem whether $\mathcal{P}(\aleph_0)/\operatorname{Fin}$ and $\mathcal{P}(\aleph_1)/\operatorname{Fin}$ can be isomorphic. The 'quantized' version is not difficult.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A curiosity

It is an open problem whether $\mathcal{P}(\aleph_0)/\operatorname{Fin}$ and $\mathcal{P}(\aleph_1)/\operatorname{Fin}$ can be isomorphic. The 'quantized' version is not difficult.

Lemma

 $\mathcal{C}_{\aleph_0} \not\cong \mathcal{C}_{\aleph_1}.$

A curiosity

It is an open problem whether $\mathcal{P}(\aleph_0)/\operatorname{Fin}$ and $\mathcal{P}(\aleph_1)/\operatorname{Fin}$ can be isomorphic. The 'quantized' version is not difficult.

Lemma

 $\mathcal{C}_{\aleph_0} \not\cong \mathcal{C}_{\aleph_1}.$

Proof.

 \mathcal{C}_{\aleph_0} is simple and \mathcal{C}_{\aleph_1} isn't.

For an infinite cardinal κ consider $\mathcal{D}_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\kappa}$.

For an infinite cardinal κ consider $\mathcal{D}_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\kappa}$. Theorem (Phillips–Weaver, 2007 for $\kappa = \aleph_0$, Farah–McKenney–Schimmerling, 2009)

For an infinite cardinal κ consider $\mathcal{D}_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\kappa}$. Theorem (Phillips–Weaver, 2007 for $\kappa = \aleph_0$, Farah–McKenney–Schimmerling, 2009) If $2^{\kappa} = \kappa^+$ and κ is regular then \mathcal{D}_{κ} has 2^{κ^+} automorphisms, hence an outer automorphism.

For an infinite cardinal κ consider $\mathcal{D}_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\kappa}$.

Theorem (Phillips–Weaver, 2007 for $\kappa = \aleph_0$, Farah–McKenney–Schimmerling, 2009)

If $2^{\kappa} = \kappa^+$ and κ is regular then \mathcal{D}_{κ} has 2^{κ^+} automorphisms, hence an outer automorphism.

It suffices to assume that the club filter on κ is $\kappa^+\text{-generated}$ and $2^{\kappa^+}>2^\kappa.$

For an infinite cardinal κ consider $\mathcal{D}_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\kappa}$.

Theorem (Phillips–Weaver, 2007 for $\kappa = \aleph_0$, Farah–McKenney–Schimmerling, 2009)

If $2^{\kappa} = \kappa^+$ and κ is regular then \mathcal{D}_{κ} has 2^{κ^+} automorphisms, hence an outer automorphism.

It suffices to assume that the club filter on κ is $\kappa^+\text{-generated}$ and $2^{\kappa^+}>2^\kappa.$

(Cf. with the fact that \mathcal{C}_{\aleph_0} has an outer automorphism if $\mathfrak{d}=\aleph_1$ and $2^{\aleph_1}>2^{\aleph_0}.)$

Proof of the case $\kappa = \aleph_1$

For a club $\boldsymbol{C}\subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} : ap_{\xi} = p_{\xi}a \text{ for all } \xi \in \mathbf{C} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of the case $\kappa = \aleph_1$

For a club $\boldsymbol{C}\subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} \colon ap_{\xi} = p_{\xi}a \text{ for all } \xi \in \mathbf{C} \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma

 $\mathcal{B}_{\aleph_1} = \bigcup_{\mathbf{C}} \mathcal{D}[\mathbf{C}].$

Proof of the case $\kappa = \aleph_1$

For a club $\mathbf{C} \subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} \colon ap_{\xi} = p_{\xi}a \text{ for all } \xi \in \mathbf{C} \}.$$

Lemma

 $\mathcal{B}_{\aleph_1} = \bigcup_{\boldsymbol{\mathsf{C}}} \mathcal{D}[\boldsymbol{\mathsf{C}}].$

Proof.

For $a \in \mathcal{B}_{\aleph_1}$ fix a continuous ϵ -chain M_{ξ} , $\xi < \omega_1$, of elementary submodels of H_{\aleph_2} containing a. Their intersections with \aleph_1 define **C** such that $a \in \mathcal{D}[\mathbf{C}]$.

・ロト・4日ト・4日ト・4日ト ヨージへで

Lemma

For every club **C** and every inner automorphism Φ of $\mathcal{D}[\mathbf{C}]$ there are inner automorphisms Ψ_1 and Ψ_2 of $\mathcal{D}[\lim \mathbf{C}]$ extending **C** that disagree on $\mathcal{D}[\lim \mathbf{C}]$

Lemma

For every club **C** and every inner automorphism Φ of $\mathcal{D}[\mathbf{C}]$ there are inner automorphisms Ψ_1 and Ψ_2 of $\mathcal{D}[\lim \mathbf{C}]$ extending **C** that disagree on $\mathcal{D}[\lim \mathbf{C}]$ modulo $\mathcal{K}_{\aleph_1,\aleph_1}$.

Lemma

For every club **C** and every inner automorphism Φ of $\mathcal{D}[\mathbf{C}]$ there are inner automorphisms Ψ_1 and Ψ_2 of $\mathcal{D}[\lim \mathbf{C}]$ extending **C** that disagree on $\mathcal{D}[\lim \mathbf{C}]$ modulo $\mathcal{K}_{\aleph_1,\aleph_1}$.

Proof.

Let $\Phi = \operatorname{Ad} u$.

For every club **C** and every inner automorphism Φ of $\mathcal{D}[\mathbf{C}]$ there are inner automorphisms Ψ_1 and Ψ_2 of $\mathcal{D}[\lim \mathbf{C}]$ extending **C** that disagree on $\mathcal{D}[\lim \mathbf{C}]$ modulo $\mathcal{K}_{\aleph_1,\aleph_1}$.

Proof.

Let $\Phi = \operatorname{Ad} u$. Fix a projection $p \in Z(\mathcal{D}[\mathbf{C}])$ such that the range of p and the range of I - p are both nonseparable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For every club **C** and every inner automorphism Φ of $\mathcal{D}[\mathbf{C}]$ there are inner automorphisms Ψ_1 and Ψ_2 of $\mathcal{D}[\lim \mathbf{C}]$ extending **C** that disagree on $\mathcal{D}[\lim \mathbf{C}]$ modulo $\mathcal{K}_{\aleph_1,\aleph_1}$.

Proof.

Let $\Phi = \operatorname{Ad} u$. Fix a projection $p \in Z(\mathcal{D}[\mathbf{C}])$ such that the range of p and the range of l - p are both nonseparable. $\Psi_1 = \operatorname{Ad}(u(l - 2p))$ $\Psi_2 = \operatorname{Ad} u$.

For every club **C** and every inner automorphism Φ of $\mathcal{D}[\mathbf{C}]$ there are inner automorphisms Ψ_1 and Ψ_2 of $\mathcal{D}[\lim \mathbf{C}]$ extending **C** that disagree on $\mathcal{D}[\lim \mathbf{C}]$ modulo $\mathcal{K}_{\aleph_1,\aleph_1}$.

Proof.

Let $\Phi = \operatorname{Ad} u$. Fix a projection $p \in Z(\mathcal{D}[\mathbf{C}])$ such that the range of p and the range of l - p are both nonseparable. $\Psi_1 = \operatorname{Ad}(u(l - 2p))$ $\Psi_2 = \operatorname{Ad} u$. For $a \in \mathcal{D}[\mathbf{C}]$ we have (l - 2p)a(l - 2p) = a, hence Ψ_1 and Ψ_2 agree on $\mathcal{D}[\mathbf{C}]$.

For every club **C** and every inner automorphism Φ of $\mathcal{D}[\mathbf{C}]$ there are inner automorphisms Ψ_1 and Ψ_2 of $\mathcal{D}[\lim \mathbf{C}]$ extending **C** that disagree on $\mathcal{D}[\lim \mathbf{C}]$ modulo $\mathcal{K}_{\aleph_1,\aleph_1}$.

Proof.

Let $\Phi = \operatorname{Ad} u$. Fix a projection $p \in Z(\mathcal{D}[\mathbf{C}])$ such that the range of p and the range of l - p are both nonseparable. $\Psi_1 = \operatorname{Ad}(u(l - 2p))$ $\Psi_2 = \operatorname{Ad} u$. For $a \in \mathcal{D}[\mathbf{C}]$ we have (l - 2p)a(l - 2p) = a, hence Ψ_1 and Ψ_2 agree on $\mathcal{D}[\mathbf{C}]$. If $\pi(p) \notin Z(\mathcal{D}[\mathbf{C}]) / \pmod{\mathcal{K}_{\aleph_1,\aleph_1}}$ then Ψ_1 and Ψ_2 are as required.

$$\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$$

$$\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'

$$\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'							
	λ	\setminus	κ	×0	\aleph_1	\aleph_2	
	×.)		TA	TA+MA	PFA	PFA

$$\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'						
$\lambda \setminus \kappa$	\aleph_0	\aleph_1	\aleph_2			
ℵ₀	ΤA	TA+MA	PFA	PFA		
\aleph_1	Х	?	?	?		

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'							
$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	ℵ₂				
ℵ₀	TA	TA+MA	PFA	PFA			
\aleph_1	Х	?	?	?			
ℵ2	Х	Х	?	?			

◆□ → <圖 → < Ξ → < Ξ → Ξ · 9 < @</p>

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

(ロ)、(型)、(E)、(E)、 E) の(の)

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'						
$\lambda \ \setminus \ \kappa$	×0	\aleph_1	ℵ₂			
×0	TA	TA+MA	PFA	PFA		
\aleph_1	Х	?	?	?		
ℵ2	Х	Х	?	?		
	Х	Х	Х	?		

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'

$\lambda \hspace{0.2em} \setminus \hspace{0.2em} \kappa$	×0	$leph_1$	\aleph_2	
ℵ₀	TA	TA+MA	PFA	PFA
\aleph_1	Х	?	?	?
ℵ2	Х	Х	?	?
	Х	Х	Х	?

' $\mathcal{C}_{\kappa,\lambda}$ has an outer automorphism'

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'

$\lambda \hspace{0.2em} \setminus \hspace{0.2em} \kappa$	80 №	\aleph_1	ℵ₂	
ℵ₀	TA	TA+MA	PFA	PFA
\aleph_1	X	?	?	?
\aleph_2	X	Х	?	?
	X	Х	Х	?

 ${}^{\prime}\mathcal{C}_{\kappa,\lambda}$ has an outer automorphism'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	ℵ₂	
×₀	СН	?	?	?

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	ℵ₂	
ℵ₀	TA	TA+MA	PFA	PFA
\aleph_1	Х	?	?	?
ℵ2	Х	Х	?	?
	Х	Х	Х	?

 ${}^{\prime}\mathcal{C}_{\kappa,\lambda}$ has an outer automorphism'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	\aleph_2	
80	СН	?	?	?
\aleph_1	Х	$2^{\aleph_1} = \aleph_2$?	?

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	Х ₀	\aleph_1	ℵ₂	
ℵ₀	TA	TA+MA	PFA	PFA
\aleph_1	Х	?	?	?
\aleph_2	Х	Х	?	?
	Х	Х	Х	?

 ${}^{\prime}\mathcal{C}_{\kappa,\lambda}$ has an outer automorphism'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	ℵ2	
×0	CH	?	?	?
\aleph_1	Х	$2^{\aleph_1} = \aleph_2$?	?
\aleph_2	Х	Х	$2^{\aleph_2} = \aleph_3$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	\aleph_2	
ℵ₀	TA	TA+MA	PFA	PFA
\aleph_1	Х	?	?	?
\aleph_2	Х	Х	?	?
	Х	Х	Х	?

 ${}^{\prime}\mathcal{C}_{\kappa,\lambda}$ has an outer automorphism'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	\aleph_2	
80	СН	?	?	?
\aleph_1	Х	$2^{\aleph_1} = \aleph_2$?	?
ℵ2	Х	Х	$2^{\aleph_2} = \aleph_3$?
	Х	Х	Х	GCH

For $\aleph_0 \leq \lambda \leq \kappa$ let

 $\mathcal{C}_{\kappa,\lambda} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa,\lambda}$

'All automorphisms of $\mathcal{C}_{\kappa,\lambda}$ are inner'

$\lambda \hspace{.1in} \setminus \hspace{.1in} \kappa$	×0	\aleph_1	ℵ₂	
ℵ₀	TA	TA+MA	PFA	PFA
\aleph_1	Х	?	?	?
\aleph_2	Х	Х	?	?
	Х	Х	Х	?

 ${}^{\prime}\mathcal{C}_{\kappa,\lambda}$ has an outer automorphism'

$\lambda \ \setminus \ \kappa$	×0	\aleph_1	\aleph_2	
ℵ ₀	СН	?	?	?
\aleph_1	Х	$2^{\aleph_1} = \aleph_2$?
\aleph_2	Х	Х	$2^{\aleph_2} = \aleph_3$?
	Х	Х	Х	GCH

Question

What is the 'right' statement of the Rigidity Conjecture?

æ