All automorphisms of all Calkin algebras Part II: Automorphisms of \mathcal{C}_{\aleph_1}

Ilijas Farah

York University

RIMS, Kyoto, November 2009

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space.

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space.

 $\mathcal{B}(H)$: The algebra of bounded linear operators.

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space.

 $\mathcal{B}(H)$: The algebra of bounded linear operators.

 $\mathcal{K}(H)$: The ideal of compact operators.

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space.

 $\mathcal{B}(H)$: The algebra of bounded linear operators.

 $\mathcal{K}(H)$: The ideal of compact operators.

C(H) = B(H)/K(H): The quotient C*-algebra, Calkin algebra.

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space.

 $\mathcal{B}(H)$: The algebra of bounded linear operators.

 $\mathcal{K}(H)$: The ideal of compact operators.

C(H) = B(H)/K(H): The quotient C*-algebra, Calkin algebra.

 $\pi \colon \mathcal{B}(H) \to \mathcal{C}(H)$: The quotient map.

```
H = \ell_2(\aleph_0): an infinite-dimensional complex Hibert space.
```

 $\mathcal{B}(H)$: The algebra of bounded linear operators.

 $\mathcal{K}(H)$: The ideal of compact operators.

C(H) = B(H)/K(H): The quotient C*-algebra, Calkin algebra.

 $\pi \colon \mathcal{B}(H) \to \mathcal{C}(H)$: The quotient map.

Question (Brown-Douglas-Fillmore, 1977)

Are all automorphisms Φ of the Calkin algebra inner?

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space.

 $\mathcal{B}(H)$: The algebra of bounded linear operators.

 $\mathcal{K}(H)$: The ideal of compact operators.

C(H) = B(H)/K(H): The quotient C*-algebra, Calkin algebra.

 $\pi \colon \mathcal{B}(H) \to \mathcal{C}(H)$: The quotient map.

Question (Brown-Douglas-Fillmore, 1977)

Are all automorphisms Φ of the Calkin algebra inner?

As usually, Φ is *inner* if for some $u \in C(H)$ we have

$$\Phi(a) = uau^*$$

for all a.

Proposition

An automorphism Φ of the Calkin algebra is inner if and only if there is a *-homomorphism $\Psi\colon \mathcal{B}(H)\to \mathcal{B}(H)$ such that the diagram

commutes.

Theorem (Phillips-Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Theorem (Phillips-Weaver, 2006)

CH implies $\mathcal{C}(H)$ has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Phillips-Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d}=\aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Theorem (Phillips-Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d}=\aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Question

What can be said in the case when H is nonseparable?

Theorem (Phillips-Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d}=\aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Question

What can be said in the case when H is nonseparable?

A sadly incomplete answer will take up today's and tomorrow's lectures.

Notation and the theorem

 $\ell_2(\kappa)$: a complex Hibert space of character density κ .

 $\mathcal{B}_{\kappa} = \mathcal{B}(\ell_2(\kappa))$: the algebra of bounded linear operators.

 \mathcal{K}_{κ} : The ideal of compact operators.

 $\mathcal{C}_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa}$: The Calkin algebra.

 $\pi \colon \mathcal{B}_{\kappa} \to \mathcal{C}_{\kappa}$: The quotient map.

Notation and the theorem

 $\ell_2(\kappa)$: a complex Hibert space of character density κ .

 $\mathcal{B}_{\kappa} = \mathcal{B}(\ell_2(\kappa))$: the algebra of bounded linear operators.

 \mathcal{K}_{κ} : The ideal of compact operators.

 $C_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa}$: The Calkin algebra.

 $\pi \colon \mathcal{B}_{\kappa} \to \mathcal{C}_{\kappa}$: The quotient map.

Theorem (Farah-McKenney-Schimmerling, 2009)

Assume MA+TA. Then all automorphisms of \mathcal{C}_{\aleph_1} are inner.

Notation and the theorem

 $\ell_2(\kappa)$: a complex Hibert space of character density κ .

 $\mathcal{B}_{\kappa} = \mathcal{B}(\ell_2(\kappa))$: the algebra of bounded linear operators.

 \mathcal{K}_{κ} : The ideal of compact operators.

 $C_{\kappa} = \mathcal{B}_{\kappa}/\mathcal{K}_{\kappa}$: The Calkin algebra.

 $\pi \colon \mathcal{B}_{\kappa} \to \mathcal{C}_{\kappa}$: The quotient map.

Theorem (Farah–McKenney–Schimmerling, 2009)

Assume MA+TA. Then all automorphisms of \mathcal{C}_{\aleph_1} are inner.

We really prove: If all automorphisms of \mathcal{C}_{\aleph_0} are inner and MA holds, then all automorphisms of \mathcal{C}_{\aleph_1} are inner.

A snapshot of the proof

A snapshot of the proof

A: a C*-algebra.

 $\mathcal{U}(A)$: the unitary group of A.

Aut(A): the automorphism group of A.

A: a C*-algebra.

 $\mathcal{U}(A)$: the unitary group of A.

Aut(A): the automorphism group of A.

Define a group homorphism

$$\mathcal{U}(A) \ni u \mapsto \mathsf{Ad}\, u \in \mathsf{Aut}(A)$$

by

$$(\operatorname{Ad} u)(a) = uau^*.$$

A: a C*-algebra.

 $\mathcal{U}(A)$: the unitary group of A.

Aut(A): the automorphism group of A.

Define a group homorphism

$$\mathcal{U}(A) \ni u \mapsto \mathsf{Ad}\, u \in \mathsf{Aut}(A)$$

by

$$(\operatorname{Ad} u)(a) = uau^*.$$

Fact

All automorphisms of A are inner iff $u \mapsto Ad u$ is a surjection.

Reduction to the separable case: Notation

For
$$\xi < \aleph_1$$
 let $\mathcal{B}_{\xi} = \ell_2(\xi)$ $\mathcal{K}_{\xi} = \mathcal{K}(\mathcal{B}_{\xi})$ $\mathcal{C}_{\xi} = \mathcal{B}_{\xi}/\mathcal{K}_{\xi}$

Reduction to the separable case: Notation

```
For \xi < \aleph_1 let \mathcal{B}_{\xi} = \ell_2(\xi) \mathcal{K}_{\xi} = \mathcal{K}(\mathcal{B}_{\xi}) \mathcal{C}_{\xi} = \mathcal{B}_{\xi}/\mathcal{K}_{\xi} p_{\xi} = \operatorname{proj}_{\ell_2(\xi)}.
```

For a club $\mathbf{C} \subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} \colon ap_\xi = p_\xi a \text{ for all } \xi \in \mathbf{C} \}.$$

For a club $\mathbf{C} \subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} \colon ap_\xi = p_\xi a \text{ for all } \xi \in \mathbf{C} \}.$$

Lemma

$$\mathcal{B}_{leph_1} = igcup_{\mathbf{C} \; \mathit{club}} \mathcal{D}[\mathbf{C}].$$

For a club $\mathbf{C} \subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} \colon ap_\xi = p_\xi a \text{ for all } \xi \in \mathbf{C} \}.$$

Lemma

$$\mathcal{B}_{\aleph_1} = \bigcup_{\mathbf{C} \ club} \mathcal{D}[\mathbf{C}].$$

Proof.

Pick $M \prec H_{\mathfrak{c}^+}$ and let $\delta = M \cap \omega_1$.

For a club $\mathbf{C} \subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} \colon ap_\xi = p_\xi a \text{ for all } \xi \in \mathbf{C} \}.$$

Lemma

$$\mathcal{B}_{\aleph_1} = \bigcup_{\textbf{C} \ \textit{club}} \mathcal{D}[\textbf{C}].$$

Proof.

Pick $M \prec H_{c^+}$ and let $\delta = M \cap \omega_1$. If $a \in M \cap \mathcal{B}_{\aleph_1}$ then $ap_{\delta} = p_{\delta}a$.

For a club $\mathbf{C} \subseteq \aleph_1$ let

$$\mathcal{D}[\mathbf{C}] = \{ a \in \mathcal{B}_{\aleph_1} \colon ap_{\xi} = p_{\xi}a \text{ for all } \xi \in \mathbf{C} \}.$$

Lemma

$$\mathcal{B}_{\aleph_1} = \bigcup_{\textbf{C} \ \textit{club}} \mathcal{D}[\textbf{C}].$$

Proof.

Pick $M \prec H_{c^+}$ and let $\delta = M \cap \omega_1$.

If $a \in M \cap \mathcal{B}_{\aleph_1}$ then $ap_{\delta} = p_{\delta}a$.

If $a \in \mathcal{B}_{\aleph_1}$ and M_{ξ} , $\xi < \omega_1$, is an \in -chain of elementary submodels of H_{c^+} such that $a \in M_0$, then with

$$\mathbf{C} = \{ M_{\xi} \cap \aleph_1 \colon \xi < \aleph_1 \}$$

we have that $a \in \mathcal{D}[\mathbf{C}]$.

Fix $\Phi \in Aut(\mathcal{C}_{\aleph_1})$.

Fix $\Phi_* \colon \mathcal{B}_{\aleph_1} \to \mathcal{B}_{\aleph_1}$ such that

commutes.

Fix $\Phi \in Aut(\mathcal{C}_{\aleph_1})$.

Fix $\Phi_* \colon \mathcal{B}_{\aleph_1} \to \mathcal{B}_{\aleph_1}$ such that

commutes.

(Note that Φ_* is only a function; we don't assume that it is a *-homomorphism or that it is Borel measurable.)

Fix $\Phi \in Aut(\mathcal{C}_{\aleph_1})$.

Fix $\Phi_* \colon \mathcal{B}_{\aleph_1} \to \mathcal{B}_{\aleph_1}$ such that

commutes.

(Note that Φ_{\ast} is only a function; we don't assume that it is a

*-homomorphism or that it is Borel measurable.)

Then

$$\mathbf{C}_{\Phi} = \{ \xi < \aleph_1 \colon \Phi_*(p_{\xi}) = p_{\xi} \}$$

Fix $\Phi \in Aut(\mathcal{C}_{\aleph_1})$.

Fix $\Phi_* \colon \mathcal{B}_{\aleph_1} \to \mathcal{B}_{\aleph_1}$ such that

commutes.

(Note that Φ_* is only a function; we don't assume that it is a

*-homomorphism or that it is Borel measurable.)

Then (essentially)

$$\mathbf{C}_{\Phi} = \{ \xi < \aleph_1 \colon \Phi_*(p_{\xi}) = p_{\xi} \}$$

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.

Lemma

If there exists $u \in \mathcal{B}_{\aleph_1}$ such that for all $\xi \in \mathbf{C}_{\Phi}$ we have $up_{\xi} = v_{\xi}$, then Ad u is a representation of Φ .

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.

Lemma

If there exists $u \in \mathcal{B}_{\aleph_1}$ such that for all $\xi \in \mathbf{C}_{\Phi}$ we have $up_{\xi} = v_{\xi}$, then Ad u is a representation of Φ .

If each v_{ξ} was unique then we would be done...

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.

Lemma

If there exists $u \in \mathcal{B}_{\aleph_1}$ such that for all $\xi \in \mathbf{C}_{\Phi}$ we have $up_{\xi} = v_{\xi}$, then Ad u is a representation of Φ .

If each v_{ξ} was unique then we would be done... ... but the truth is more interesting.

We need to describe the following set:

 $\{w \in \mathcal{B}(H) \colon \mathsf{Ad}\ w \text{ is a representation of } \Phi \upharpoonright \mathcal{C}_{\xi}\}$

We need to describe the following set:

$$\{w\in \mathcal{B}(H)\colon \operatorname{Ad} w \text{ is a representation of } \Phi \upharpoonright \mathcal{C}_\xi\}$$
 or rather, for unitaries u,v in $\mathcal{B}(H)$, the relation
$$v\sim w \text{ iff } \operatorname{Ad} \pi(u)=\operatorname{Ad} \pi(v).$$

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u = \operatorname{Ad} v$ if and only if u = zv for some $z \in \mathbb{C}$.

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u = \operatorname{Ad} v$ if and only if u = zv for some $z \in \mathbb{C}$.

Proof.

Fact: $Z(\mathcal{B}(H)) = \mathbb{C}$.

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u = \operatorname{Ad} v$ if and only if u = zv for some $z \in \mathbb{C}$.

Proof.

Fact: $Z(\mathcal{B}(H)) = \mathbb{C}$.

We have Ad $u \equiv \text{Ad } v$ if and only if $uau^* = vav^*$ for all a

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u = \operatorname{Ad} v$ if and only if u = zv for some $z \in \mathbb{C}$.

Proof.

```
Fact: Z(\mathcal{B}(H)) = \mathbb{C}.
We have \operatorname{Ad} u \equiv \operatorname{Ad} v if and only if uau^* = vav^* for all a if and only if (v^*u)a(u^*v) = a for all a
```

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u = \operatorname{Ad} v$ if and only if u = zv for some $z \in \mathbb{C}$.

Proof.

Fact: $Z(\mathcal{B}(H)) = \mathbb{C}$. We have Ad $u \equiv \operatorname{Ad} v$ if and only if $uau^* = vav^*$ for all a if and only if $(v^*u)a(u^*v) = a$ for all a if and only if $(v^*u)a(v^*u)^* = a$ for all a

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u = \operatorname{Ad} v$ if and only if u = zv for some $z \in \mathbb{C}$.

Proof.

Fact: $Z(\mathcal{B}(H)) = \mathbb{C}$. We have $\operatorname{Ad} u \equiv \operatorname{Ad} v$ if and only if $uau^* = vav^*$ for all a if and only if $(v^*u)a(u^*v) = a$ for all a if and only if $(v^*u)a(v^*u)^* = a$ for all a if and only if $(v^*u)a = a(v^*u)$ for all a

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u = \operatorname{Ad} v$ if and only if u = zv for some $z \in \mathbb{C}$.

Proof.

Fact: $Z(\mathcal{B}(H)) = \mathbb{C}$. We have Ad $u \equiv \operatorname{Ad} v$

if and only if $uau^* = vav^*$ for all a if and only if $(v^*u)a(u^*v) = a$ for all a if and only if $(v^*u)a(v^*u)^* = a$ for all a if and only if $(v^*u)a = a(v^*u)$ for all a if and only if $v^*u \in Z(\mathcal{B}(H))$.

A description of \sim on C(H)

For u and v in C(H) we have Ad $u \equiv \operatorname{Ad} v$ iff u = zv for $z \in \mathbb{C}$, but that fact is of no use.

For u and v in C(H) we have Ad $u \equiv \operatorname{Ad} v$ iff u = zv for $z \in \mathbb{C}$, but that fact is of no use.

Lemma

For u and v in $\mathcal{B}(H)$ such that $\pi(u)$ and $\pi(v)$ are unitaries in $\mathcal{C}(H)$ we have $\operatorname{Ad} \pi(u) \equiv \operatorname{Ad} \pi(v)$ if and only if

For u and v in C(H) we have Ad $u \equiv \operatorname{Ad} v$ iff u = zv for $z \in \mathbb{C}$, but that fact is of no use.

Lemma

For u and v in $\mathcal{B}(H)$ such that $\pi(u)$ and $\pi(v)$ are unitaries in $\mathcal{C}(H)$ we have $\operatorname{Ad} \pi(u) \equiv \operatorname{Ad} \pi(v)$ if and only if there exists $z \in \mathbb{T}$ such that u - zv is compact.

Choosing the unitaries

For $\aleph_0 \leq \xi$ pick v_{ξ} so that

1. Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$, and

Choosing the unitaries

For $\aleph_0 \leq \xi$ pick v_{ξ} so that

- 1. Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$, and
- 2. $v_{\aleph_0} p_{\aleph_0} v_{\xi}$ is compact.

Choosing the unitaries

For $\aleph_0 \leq \xi$ pick v_{ξ} so that

- 1. Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$, and
- 2. $v_{\aleph_0} p_{\aleph_0} v_{\xi}$ is compact.

Then for all $\aleph_0 \leq \eta < \xi$ we have that

$$v_{\eta}-p_{\eta}v_{\xi}$$

is compact.

Let

$$X_{\xi} = \{ w \in \mathcal{B}_{\xi} \colon w - v_{\xi} \in \mathcal{K}_{\xi} \}$$

considered as a metric space wrt

$$d_{\xi}(u,w) = \|u - w\|$$

Let

$$X_{\xi} = \{ w \in \mathcal{B}_{\xi} \colon w - v_{\xi} \in \mathcal{K}_{\xi} \}$$

considered as a metric space wrt

$$d_{\xi}(u,w) = \|u-w\|$$

and let $\pi_{\xi\eta}\colon X_\xi o X_\eta$ be

$$\pi_{\xi\eta}(w) = p_{\eta}wp_{\eta}.$$

Let

$$X_{\xi} = \{ w \in \mathcal{B}_{\xi} \colon w - v_{\xi} \in \mathcal{K}_{\xi} \}$$

considered as a metric space wrt

$$d_{\xi}(u,w) = \|u - w\|$$

and let $\pi_{\xi\eta}\colon X_\xi o X_\eta$ be

$$\pi_{\xi\eta}(w)=p_{\eta}wp_{\eta}.$$

Fact

 $T = \langle X_{\xi}, \pi_{\xi\eta} \colon \omega \leq \eta < \xi < \omega_1 \rangle$ is a Polish ω_1 -tree.

Assume T has an ω_1 -branch, w_{ξ} , for $\xi < \omega_1$. Define $w \in \mathcal{B}(\ell_2(\aleph_1))$ by

$$w(x) = \lim_{\xi \to \omega_1} w_{\xi}(x)$$

Assume T has an ω_1 -branch, w_{ξ} , for $\xi < \omega_1$.

Define $w \in \mathcal{B}(\ell_2(\aleph_1))$ by

$$w(x) = \lim_{\xi \to \omega_1} w_{\xi}(x)$$

Then $\operatorname{Ad} \pi(w)$ implements Φ .

Assume T has an ω_1 -branch, w_{ξ} , for $\xi < \omega_1$. Define $w \in \mathcal{B}(\ell_2(\aleph_1))$ by

$$w(x) = \lim_{\xi \to \omega_1} w_{\xi}(x)$$

Then Ad $\pi(w)$ implements Φ . So we may assume T has no ω_1 -branches.

For $a \in \mathcal{B}_{\aleph_1}$ define

$$X(a)_{\xi} = \{waw^* : w \in X_{\xi}\}$$

wrt the norm metric and $\pi_{\xi\eta}\colon X(a)_\xi \to X(a)_\eta$ via

$$\pi_{\xi\eta}(waw^*) = p_{\eta}waw^*p_{\eta}.$$

For $a \in \mathcal{B}_{\aleph_1}$ define

$$X(a)_{\xi} = \{waw^* \colon w \in X_{\xi}\}$$

wrt the norm metric and $\pi_{\xi\eta}\colon X(a)_\xi o X(a)_\eta$ via

$$\pi_{\xi\eta}(waw^*) = p_{\eta}waw^*p_{\eta}.$$

Lemma

1. Each T(a) is a Polish ω_1 -tree.

For $a \in \mathcal{B}_{\aleph_1}$ define

$$X(a)_{\xi} = \{waw^* \colon w \in X_{\xi}\}$$

wrt the norm metric and $\pi_{\xi\eta}\colon X(a)_\xi \to X(a)_\eta$ via

$$\pi_{\xi\eta}(waw^*) = p_{\eta}waw^*p_{\eta}.$$

Lemma

- 1. Each T(a) is a Polish ω_1 -tree.
- 2. T(a) has an ω_1 -branch, defined by $\Phi_*(a)$.

For $a \in \mathcal{B}_{\aleph_1}$ define

$$X(a)_{\xi} = \{waw^* \colon w \in X_{\xi}\}$$

wrt the norm metric and $\pi_{\xi\eta}\colon X(a)_\xi \to X(a)_\eta$ via

$$\pi_{\xi\eta}(waw^*) = p_{\eta}waw^*p_{\eta}.$$

Lemma

- 1. Each T(a) is a Polish ω_1 -tree.
- 2. T(a) has an ω_1 -branch, defined by $\Phi_*(a)$.

We add a generic $a \in \mathcal{B}_{\aleph_1}$ such that T(a) has no ω_1 -branches.

Consider the forcing \mathbb{P}_Z with conditions $p=(F_p,M_p)$, where $F_p\subseteq Z$ is finite and M_p is a matrix over $\mathbb{Q}+i\mathbb{Q}$ indexed by $F_p\times F_p$ such that $\|M_p\|<1$.

Consider the forcing \mathbb{P}_Z with conditions $p=(F_p,M_p)$, where $F_p\subseteq Z$ is finite and M_p is a matrix over $\mathbb{Q}+i\mathbb{Q}$ indexed by $F_p\times F_p$ such that $\|M_p\|<1$. Let $p\le q$ iff $F_p\supseteq F_q$ and M_p extends M_q .

Consider the forcing \mathbb{P}_Z with conditions $p=(F_p,M_p)$, where $F_p\subseteq Z$ is finite and M_p is a matrix over $\mathbb{Q}+i\mathbb{Q}$ indexed by $F_p\times F_p$ such that $\|M_p\|<1$. Let $p\le q$ iff $F_p\supseteq F_q$ and M_p extends M_q .

Lemma

If Z is countable then \mathbb{P}_Z is ccc.

Consider the forcing \mathbb{P}_Z with conditions $p=(F_p,M_p)$, where $F_p\subseteq Z$ is finite and M_p is a matrix over $\mathbb{Q}+i\mathbb{Q}$ indexed by $F_p\times F_p$ such that $\|M_p\|<1$. Let $p\le q$ iff $F_p\supseteq F_q$ and M_p extends M_q .

Lemma

If Z is countable then \mathbb{P}_Z is ccc.

(\mathbb{P}_Z is essentially adding a Cohen real to the unit ball of $\mathcal{B}(\ell_2(Z))$ in the weak operator topology.)

 $\mathbb{P}_{\aleph_1} \text{ collapses } \aleph_1.$

 \mathbb{P}_{\aleph_1} collapses \aleph_1 . Let \mathbb{P} be the finite support product of \aleph_1 copies of \mathbb{P}_{\aleph_0} .

$$\begin{split} \mathbb{P}_{\aleph_1} \text{ collapses } \aleph_1. \\ \text{Let } \mathbb{P} \text{ be the finite support product of } \aleph_1 \text{ copies of } \mathbb{P}_{\aleph_0}. \\ \text{Then } \mathbb{P} \text{ is ccc and it adds a generic element } \textit{a} \text{ to } \mathcal{D}[\textbf{C}_{\Phi}]. \end{split}$$

Bad news and good news

 \mathbb{P}_{\aleph_1} collapses \aleph_1 .

Let \mathbb{P} be the finite support product of \aleph_1 copies of \mathbb{P}_{\aleph_0} . Then \mathbb{P} is ccc and it adds a generic element a to $\mathcal{D}[\mathbf{C}_{\Phi}]$.

Lemma

If T has no cofinal branch, then \mathbb{P} forces that T(a) has no cofinal branch.

Let $\varepsilon > 0$ and $\mathbb Q$ be a ccc forcing that ε -specializes a subtree of $\mathcal T(g)$.

Let $\varepsilon > 0$ and $\mathbb Q$ be a ccc forcing that ε -specializes a subtree of $\mathcal T(g)$.

Applying MA to $\mathbb{P}*\dot{\mathbb{Q}}$, find $g\in\mathcal{B}_{\aleph_1}$ such that T(a) has (cofinal) ε -special subtree.

Let $\varepsilon > 0$ and $\mathbb Q$ be a ccc forcing that ε -specializes a subtree of $\mathcal T(g)$.

Applying MA to $\mathbb{P}*\dot{\mathbb{Q}}$, find $g\in\mathcal{B}_{\aleph_1}$ such that T(a) has (cofinal) ε -special subtree.

Lemma

If T(a) has a cofinal branch then every cofinal subtree of T(g) has a cofinal branch.

Let $\varepsilon>0$ and $\mathbb Q$ be a ccc forcing that ε -specializes a subtree of T(g).

Applying MA to $\mathbb{P}*\dot{\mathbb{Q}}$, find $g\in\mathcal{B}_{\aleph_1}$ such that T(a) has (cofinal) ε -special subtree.

Lemma

If T(a) has a cofinal branch then every cofinal subtree of T(g) has a cofinal branch.

Proof.

T(a) is coherent because \mathcal{K}_{\aleph_1} is the closure of finite rank operators (see the next slide).

Let $\varepsilon>0$ and $\mathbb Q$ be a ccc forcing that ε -specializes a subtree of T(g).

Applying MA to $\mathbb{P}*\dot{\mathbb{Q}}$, find $g\in\mathcal{B}_{\aleph_1}$ such that T(a) has (cofinal) ε -special subtree.

Lemma

If T(a) has a cofinal branch then every cofinal subtree of T(g) has a cofinal branch.

Proof.

T(a) is coherent because \mathcal{K}_{\aleph_1} is the closure of finite rank operators (see the next slide).

Since this is a contradiction, we conclude that T has a cofinal branch, hence Φ is inner. \square

A Polish ω_1 -tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is coherent

A Polish ω_1 -tree $T=\langle X_\xi,\pi_{\xi\eta},\eta<\xi<\omega_1\rangle$ is *coherent* if there is a set Z such that

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ ,

A Polish ω_1 -tree $T=\langle X_\xi,\pi_{\xi\eta},\eta<\xi<\omega_1\rangle$ is *coherent* if there is a set Z such that

- 1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ ,
- 2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,

A Polish ω_1 -tree $T=\langle X_\xi,\pi_{\xi\eta},\eta<\xi<\omega_1\rangle$ is *coherent* if there is a set Z such that

- 1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ ,
- 2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,
- 3. For all x, y in X_{ξ} and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

A Polish ω_1 -tree $T=\langle X_\xi,\pi_{\xi\eta},\eta<\xi<\omega_1\rangle$ is *coherent* if there is a set Z such that

- 1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ ,
- 2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,
- 3. For all x, y in X_{ξ} and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

with $y' \in X_{\xi}$ satisfying

$$\{\zeta < \xi \colon y'(\zeta) \neq y(\zeta)\} \subseteq F.$$

A Polish ω_1 -tree $T=\langle X_\xi,\pi_{\xi\eta},\eta<\xi<\omega_1\rangle$ is *coherent* if there is a set Z such that

- 1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ ,
- 2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,
- 3. For all x, y in X_{ξ} and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

with $y' \in X_{\xi}$ satisfying

$$\{\zeta < \xi \colon y'(\zeta) \neq y(\zeta)\} \subseteq F.$$

Lemma

If a coherent $P\omega_1$ -tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.

A Polish ω_1 -tree $T=\langle X_\xi,\pi_{\xi\eta},\eta<\xi<\omega_1\rangle$ is *coherent* if there is a set Z such that

- 1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ ,
- 2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,
- 3. For all x, y in X_{ξ} and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

with $y' \in X_{\xi}$ satisfying

$$\{\zeta < \xi \colon y'(\zeta) \neq y(\zeta)\} \subseteq F.$$

Lemma

If a coherent $P\omega_1$ -tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.

In particular, it cannot have a cofinal special subtree.

Theorem (Farah–McKenney–Schimmerling, 2009)

Assume PFA. Then all automorphisms of C_{κ} are inner, for every infinite cardinal κ .

Theorem (Farah–McKenney–Schimmerling, 2009)

Assume PFA. Then all automorphisms of C_{κ} are inner, for every infinite cardinal κ .

The proof involves uniformization of 'Polish coherent families' using PFA.

Theorem (Farah–McKenney–Schimmerling, 2009)

Assume PFA. Then all automorphisms of C_{κ} are inner, for every infinite cardinal κ .

The proof involves uniformization of 'Polish coherent families' using PFA.

Next time

What we don't know.