All automorphisms of all Calkin algebras Part II: Automorphisms of $\mathcal{C}_{\aleph_{1}}$

Ilijas Farah
York University

RIMS, Kyoto, November 2009

The Calkin algebra

$H=\ell_{2}\left(\aleph_{0}\right):$ an infinite-dimensional complex Hibert space.

The Calkin algebra

$H=\ell_{2}\left(\aleph_{0}\right)$: an infinite-dimensional complex Hibert space. $\mathcal{B}(H)$: The algebra of bounded linear operators.

The Calkin algebra

$H=\ell_{2}\left(\aleph_{0}\right)$: an infinite-dimensional complex Hibert space. $\mathcal{B}(H)$: The algebra of bounded linear operators.
$\mathcal{K}(H)$: The ideal of compact operators.

The Calkin algebra

$H=\ell_{2}\left(\aleph_{0}\right)$: an infinite-dimensional complex Hibert space.
$\mathcal{B}(H)$: The algebra of bounded linear operators.
$\mathcal{K}(H)$: The ideal of compact operators.
$\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$: The quotient C^{*}-algebra, Calkin algebra.

The Calkin algebra

$H=\ell_{2}\left(\aleph_{0}\right)$: an infinite-dimensional complex Hibert space.
$\mathcal{B}(H)$: The algebra of bounded linear operators.
$\mathcal{K}(H)$: The ideal of compact operators.
$\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$: The quotient C*-algebra, Calkin algebra.
$\pi: \mathcal{B}(H) \rightarrow \mathcal{C}(H)$: The quotient map.

The Calkin algebra

$H=\ell_{2}\left(\aleph_{0}\right)$: an infinite-dimensional complex Hibert space.
$\mathcal{B}(H)$: The algebra of bounded linear operators.
$\mathcal{K}(H)$: The ideal of compact operators.
$\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$: The quotient C^{*}-algebra, Calkin algebra.
$\pi: \mathcal{B}(H) \rightarrow \mathcal{C}(H)$: The quotient map.
Question (Brown-Douglas-Fillmore, 1977)
Are all automorphisms Φ of the Calkin algebra inner?

The Calkin algebra

$H=\ell_{2}\left(\aleph_{0}\right)$: an infinite-dimensional complex Hibert space.
$\mathcal{B}(H)$: The algebra of bounded linear operators.
$\mathcal{K}(H)$: The ideal of compact operators.
$\mathcal{C}(H)=\mathcal{B}(H) / \mathcal{K}(H)$: The quotient C^{*}-algebra, Calkin algebra.
$\pi: \mathcal{B}(H) \rightarrow \mathcal{C}(H)$: The quotient map.
Question (Brown-Douglas-Fillmore, 1977)
Are all automorphisms Φ of the Calkin algebra inner?
As usually, Φ is inner if for some $u \in \mathcal{C}(H)$ we have

$$
\Phi(a)=u a u^{*}
$$

for all a.

Proposition

An automorphism Φ of the Calkin algebra is inner if and only if there is a ${ }^{*}$-homomorphism $\Psi: \mathcal{B}(H) \rightarrow \mathcal{B}(H)$ such that the diagram

commutes.

A rather complete picture

Theorem (Phillips-Weaver, 2006)
CH implies $\mathcal{C}(H)$ has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

A rather complete picture

Theorem (Phillips-Weaver, 2006)
CH implies $\mathcal{C}(H)$ has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)
If $\mathfrak{d}=\aleph_{1}$ then $\mathcal{C}(H)$ has $2^{\aleph_{1}}$ automorphisms.

A rather complete picture

Theorem (Phillips-Weaver, 2006)
CH implies $\mathcal{C}(H)$ has $2^{\text {c }}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)
If $\mathfrak{d}=\aleph_{1}$ then $\mathcal{C}(H)$ has $2^{\aleph_{1}}$ automorphisms.
Theorem (Farah, 2007)
TA implies all automorphisms of $\mathcal{C}(H)$ are inner.

A rather complete picture

Theorem (Phillips-Weaver, 2006)
CH implies $\mathcal{C}(H)$ has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)
If $\mathfrak{d}=\aleph_{1}$ then $\mathcal{C}(H)$ has $2^{\aleph_{1}}$ automorphisms.
Theorem (Farah, 2007)
TA implies all automorphisms of $\mathcal{C}(H)$ are inner.
Question
What can be said in the case when H is nonseparable?

A rather complete picture

Theorem (Phillips-Weaver, 2006)
CH implies $\mathcal{C}(H)$ has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)
If $\mathfrak{d}=\aleph_{1}$ then $\mathcal{C}(H)$ has $2^{\aleph_{1}}$ automorphisms.
Theorem (Farah, 2007)
TA implies all automorphisms of $\mathcal{C}(H)$ are inner.
Question
What can be said in the case when H is nonseparable?
A sadly incomplete answer will take up today's and tomorrow's lectures.

Notation and the theorem

$\ell_{2}(\kappa)$: a complex Hibert space of character density κ. $\mathcal{B}_{\kappa}=\mathcal{B}\left(\ell_{2}(\kappa)\right)$: the algebra of bounded linear operators.
\mathcal{K}_{κ} : The ideal of compact operators.
$\mathcal{C}_{\kappa}=\mathcal{B}_{\kappa} / \mathcal{K}_{\kappa}$: The Calkin algebra.
$\pi: \mathcal{B}_{\kappa} \rightarrow \mathcal{C}_{\kappa}$: The quotient map.

Notation and the theorem

$\ell_{2}(\kappa)$: a complex Hibert space of character density κ.
$\mathcal{B}_{\kappa}=\mathcal{B}\left(\ell_{2}(\kappa)\right)$: the algebra of bounded linear operators.
\mathcal{K}_{κ} : The ideal of compact operators.
$\mathcal{C}_{\kappa}=\mathcal{B}_{\kappa} / \mathcal{K}_{\kappa}$: The Calkin algebra.
$\pi: \mathcal{B}_{\kappa} \rightarrow \mathcal{C}_{\kappa}$: The quotient map.
Theorem (Farah-McKenney-Schimmerling, 2009)
Assume $M A+T A$. Then all automorphisms of $\mathcal{C}_{\aleph_{1}}$ are inner.

Notation and the theorem

$\ell_{2}(\kappa)$: a complex Hibert space of character density κ.
$\mathcal{B}_{\kappa}=\mathcal{B}\left(\ell_{2}(\kappa)\right)$: the algebra of bounded linear operators.
\mathcal{K}_{κ} : The ideal of compact operators.
$\mathcal{C}_{\kappa}=\mathcal{B}_{\kappa} / \mathcal{K}_{\kappa}$: The Calkin algebra.
$\pi: \mathcal{B}_{\kappa} \rightarrow \mathcal{C}_{\kappa}$: The quotient map.
Theorem (Farah-McKenney-Schimmerling, 2009)
Assume $M A+T A$. Then all automorphisms of $\mathcal{C}_{\aleph_{1}}$ are inner.
We really prove: If all automorphisms of $\mathcal{C}_{\aleph_{0}}$ are inner and MA holds, then all automorphisms of $\mathcal{C}_{\aleph_{1}}$ are inner.

A snapshot of the proof

A snapshot of the proof

A sketch of the proof

A sketch of the proof

A: a C*-algebra.
$\mathcal{U}(A)$: the unitary group of A.
Aut (A) : the automorphism group of A.

A sketch of the proof

A: a C*-algebra.
$\mathcal{U}(A)$: the unitary group of A.
Aut (A) : the automorphism group of A.
Define a group homorphism

$$
\mathcal{U}(A) \ni u \mapsto \operatorname{Ad} u \in \operatorname{Aut}(A)
$$

by

$$
(\operatorname{Ad} u)(a)=u a u^{*} .
$$

A sketch of the proof

A: a C*-algebra.
$\mathcal{U}(A)$: the unitary group of A.
Aut (A) : the automorphism group of A.
Define a group homorphism

$$
\mathcal{U}(A) \ni u \mapsto \operatorname{Ad} u \in \operatorname{Aut}(A)
$$

by

$$
(\operatorname{Ad} u)(a)=u a u^{*} .
$$

Fact
All automorphisms of A are inner iff $u \mapsto \operatorname{Ad} u$ is a surjection.

Reduction to the separable case: Notation

$$
\begin{aligned}
& \text { For } \xi<\mathcal{\aleph}_{1} \text { let } \\
& \mathcal{B}_{\xi}=\ell_{2}(\xi) \\
& \mathcal{K}_{\xi}=\mathcal{K}\left(\mathcal{B}_{\xi}\right) \\
& \mathcal{C}_{\xi}=\mathcal{B}_{\xi} / \mathcal{K}_{\xi}
\end{aligned}
$$

Reduction to the separable case: Notation

For $\xi<\aleph_{1}$ let
$\mathcal{B}_{\xi}=\ell_{2}(\xi)$
$\mathcal{K}_{\xi}=\mathcal{K}\left(\mathcal{B}_{\xi}\right)$
$\mathcal{C}_{\xi}=\mathcal{B}_{\xi} / \mathcal{K}_{\xi}$
$p_{\xi}=\operatorname{proj}_{\ell_{2}(\xi)}$.

Reduction to the separable case

For a club $\mathbf{C} \subseteq \aleph_{1}$ let

$$
\mathcal{D}[\mathbf{C}]=\left\{a \in \mathcal{B}_{\aleph_{1}}: a p_{\xi}=p_{\xi} a \text { for all } \xi \in \mathbf{C}\right\} .
$$

Reduction to the separable case

For a club $\mathbf{C} \subseteq \aleph_{1}$ let

$$
\mathcal{D}[\mathbf{C}]=\left\{a \in \mathcal{B}_{\aleph_{1}}: a p_{\xi}=p_{\xi} a \text { for all } \xi \in \mathbf{C}\right\} .
$$

Lemma

$$
\mathcal{B}_{\aleph_{1}}=\bigcup_{\mathbf{C} \text { club }} \mathcal{D}[\mathbf{C}] .
$$

Reduction to the separable case

For a club $\mathbf{C} \subseteq \aleph_{1}$ let

$$
\mathcal{D}[\mathbf{C}]=\left\{a \in \mathcal{B}_{\aleph_{1}}: a p_{\xi}=p_{\xi} a \text { for all } \xi \in \mathbf{C}\right\} .
$$

Lemma
$\mathcal{B}_{\aleph_{1}}=\bigcup_{\mathbf{C} \text { club }} \mathcal{D}[\mathbf{C}]$.
Proof.
Pick $M \prec H_{\mathbf{c}^{+}}$and let $\delta=M \cap \omega_{1}$.

Reduction to the separable case

For a club $\mathbf{C} \subseteq \aleph_{1}$ let

$$
\mathcal{D}[\mathbf{C}]=\left\{a \in \mathcal{B}_{\aleph_{1}}: a p_{\xi}=p_{\xi} a \text { for all } \xi \in \mathbf{C}\right\}
$$

Lemma
$\mathcal{B}_{\aleph_{1}}=\bigcup_{\text {Cclub }} \mathcal{D}[\mathbf{C}]$.
Proof.
Pick $M \prec H_{\mathfrak{c}^{+}}$and let $\delta=M \cap \omega_{1}$.
If $a \in M \cap \mathcal{B}_{\aleph_{1}}$ then $a p_{\delta}=p_{\delta} a$.

Reduction to the separable case

For a club $\mathbf{C} \subseteq \aleph_{1}$ let

$$
\mathcal{D}[\mathbf{C}]=\left\{a \in \mathcal{B}_{\aleph_{1}}: a p_{\xi}=p_{\xi} a \text { for all } \xi \in \mathbf{C}\right\} .
$$

Lemma
$\mathcal{B}_{\aleph_{1}}=\bigcup_{\mathbf{C} \text { club }} \mathcal{D}[\mathbf{C}]$.
Proof.
Pick $M \prec H_{c^{+}}$and let $\delta=M \cap \omega_{1}$.
If $a \in M \cap \mathcal{B}_{\aleph_{1}}$ then $a p_{\delta}=p_{\delta} a$.
If $a \in \mathcal{B}_{\aleph_{1}}$ and $M_{\xi}, \xi<\omega_{1}$, is an \in-chain of elementary submodels of $H_{c^{+}}$such that $a \in M_{0}$, then with

$$
\mathbf{C}=\left\{M_{\xi} \cap \aleph_{1}: \xi<\aleph_{1}\right\}
$$

we have that $a \in \mathcal{D}[\mathbf{C}]$.

Representations

Fix $\Phi \in \operatorname{Aut}\left(\mathcal{C}_{\aleph_{1}}\right)$.
Fix $\Phi_{*}: \mathcal{B}_{\aleph_{1}} \rightarrow \mathcal{B}_{\aleph_{1}}$ such that

commutes.

Representations

Fix $\Phi \in \operatorname{Aut}\left(\mathcal{C}_{\aleph_{1}}\right)$.
Fix $\Phi_{*}: \mathcal{B}_{\aleph_{1}} \rightarrow \mathcal{B}_{\aleph_{1}}$ such that

commutes.
(Note that Φ_{*} is only a function; we don't assume that it is a *-homomorphism or that it is Borel measurable.)

Representations

Fix $\Phi \in \operatorname{Aut}\left(\mathcal{C}_{\aleph_{1}}\right)$.
Fix $\Phi_{*}: \mathcal{B}_{\aleph_{1}} \rightarrow \mathcal{B}_{\aleph_{1}}$ such that

commutes.
(Note that Φ_{*} is only a function; we don't assume that it is a *-homomorphism or that it is Borel measurable.)
Then

$$
\mathbf{C}_{\Phi}=\left\{\xi<\aleph_{1}: \Phi_{*}\left(p_{\xi}\right)=p_{\xi}\right\}
$$

includes a club.

Representations

Fix $\Phi \in \operatorname{Aut}\left(\mathcal{C}_{\aleph_{1}}\right)$.
Fix $\Phi_{*}: \mathcal{B}_{\aleph_{1}} \rightarrow \mathcal{B}_{\aleph_{1}}$ such that

commutes.
(Note that Φ_{*} is only a function; we don't assume that it is a *-homomorphism or that it is Borel measurable.)
Then (essentially)

$$
\mathbf{C}_{\Phi}=\left\{\xi<\aleph_{1}: \Phi_{*}\left(p_{\xi}\right)=p_{\xi}\right\}
$$

includes a club.

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that $\operatorname{Ad} v_{\xi}$ is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that $\operatorname{Ad} v_{\xi}$ is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.
Lemma
If there exists $u \in \mathcal{B}_{\aleph_{1}}$ such that for all $\xi \in \mathbf{C}_{\phi}$ we have $u p_{\xi}=v_{\xi}$, then $\operatorname{Ad} u$ is a representation of Φ.

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that $\operatorname{Ad} v_{\xi}$ is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.
Lemma
If there exists $u \in \mathcal{B}_{\aleph_{1}}$ such that for all $\xi \in \mathbf{C}_{\phi}$ we have $u p_{\xi}=v_{\xi}$, then $\operatorname{Ad} u$ is a representation of Φ.
If each v_{ξ} was unique then we would be done...

Now we use the separable case

For each $\xi \in \mathbf{C}_{\Phi}$ pick v_{ξ} such that $\operatorname{Ad} v_{\xi}$ is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$.
Lemma
If there exists $u \in \mathcal{B}_{\aleph_{1}}$ such that for all $\xi \in \mathbf{C}_{\phi}$ we have $u p_{\xi}=v_{\xi}$, then $\operatorname{Ad} u$ is a representation of Φ.
If each v_{ξ} was unique then we would be done...
... but the truth is more interesting.

We need to describe the following set:

$$
\left\{w \in \mathcal{B}(H): \text { Ad } w \text { is a representation of } \Phi \upharpoonright \mathcal{C}_{\xi}\right\}
$$

We need to describe the following set:

$$
\left\{w \in \mathcal{B}(H): \text { Ad } w \text { is a representation of } \Phi \upharpoonright \mathcal{C}_{\xi}\right\}
$$

or rather, for unitaries u, v in $\mathcal{B}(H)$, the relation

$$
v \sim w \text { iff } \operatorname{Ad} \pi(u)=\operatorname{Ad} \pi(v)
$$

A description of \sim on $\mathcal{B}(H)$

Lemma
For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u=\operatorname{Ad} v$ if and only if $u=z v$ for some $z \in \mathbb{C}$.

A description of \sim on $\mathcal{B}(H)$

Lemma
For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u=\operatorname{Ad} v$ if and only if $u=z v$ for some $z \in \mathbb{C}$.

Proof.
Fact: $Z(\mathcal{B}(H))=\mathbb{C}$.

A description of \sim on $\mathcal{B}(H)$

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u=\operatorname{Ad} v$ if and only if $u=z v$ for some $z \in \mathbb{C}$.

Proof.
Fact: $Z(\mathcal{B}(H))=\mathbb{C}$.
We have $\operatorname{Ad} u \equiv \operatorname{Ad} v \quad$ if and only if $u a u^{*}=v a v^{*}$ for all a

A description of \sim on $\mathcal{B}(H)$

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u=\operatorname{Ad} v$ if and only if $u=z v$ for some $z \in \mathbb{C}$.

Proof.
Fact: $Z(\mathcal{B}(H))=\mathbb{C}$.
We have $\operatorname{Ad} u \equiv \operatorname{Ad} v \quad$ if and only if $u a u^{*}=v a v^{*}$ for all a if and only if $\left(v^{*} u\right) a\left(u^{*} v\right)=a$ for all a

A description of \sim on $\mathcal{B}(H)$

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u=\operatorname{Ad} v$ if and only if $u=z v$ for some $z \in \mathbb{C}$.

Proof.
Fact: $Z(\mathcal{B}(H))=\mathbb{C}$.
We have $\operatorname{Ad} u \equiv \operatorname{Ad} v \quad$ if and only if $u a u^{*}=v a v^{*}$ for all a
if and only if $\left(v^{*} u\right) a\left(u^{*} v\right)=a$ for all a if and only if $\left(v^{*} u\right) a\left(v^{*} u\right)^{*}=a$ for all a

A description of \sim on $\mathcal{B}(H)$

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u=\operatorname{Ad} v$ if and only if $u=z v$ for some $z \in \mathbb{C}$.

Proof.
Fact: $Z(\mathcal{B}(H))=\mathbb{C}$.
We have $\operatorname{Ad} u \equiv \operatorname{Ad} v$ if and only if $u a u^{*}=v a v^{*}$ for all a
if and only if $\left(v^{*} u\right) a\left(u^{*} v\right)=a$ for all a
if and only if $\left(v^{*} u\right) a\left(v^{*} u\right)^{*}=a$ for all a
if and only if $\left(v^{*} u\right) a=a\left(v^{*} u\right)$ for all a

A description of \sim on $\mathcal{B}(H)$

Lemma

For u and v in $\mathcal{U}(\mathcal{B}(H))$ we have $\operatorname{Ad} u=\operatorname{Ad} v$ if and only if $u=z v$ for some $z \in \mathbb{C}$.

Proof.
Fact: $Z(\mathcal{B}(H))=\mathbb{C}$.
We have $\operatorname{Ad} u \equiv \operatorname{Ad} v \quad$ if and only if $u a u^{*}=v a v^{*}$ for all a
if and only if $\left(v^{*} u\right) a\left(u^{*} v\right)=a$ for all a if and only if $\left(v^{*} u\right) a\left(v^{*} u\right)^{*}=a$ for all a if and only if $\left(v^{*} u\right) a=a\left(v^{*} u\right)$ for all a if and only if $v^{*} u \in Z(\mathcal{B}(H))$.

A description of \sim on $\mathcal{C}(H)$

A description of \sim on $\mathcal{C}(H)$

For u and v in $\mathcal{C}(H)$ we have $\operatorname{Ad} u \equiv \operatorname{Ad} v$ iff $u=z v$ for $z \in \mathbb{C}$, but that fact is of no use.

A description of \sim on $\mathcal{C}(H)$

For u and v in $\mathcal{C}(H)$ we have $\operatorname{Ad} u \equiv \operatorname{Ad} v$ iff $u=z v$ for $z \in \mathbb{C}$, but that fact is of no use.

Lemma
For u and v in $\mathcal{B}(H)$ such that $\pi(u)$ and $\pi(v)$ are unitaries in $\mathcal{C}(H)$ we have $\operatorname{Ad} \pi(u) \equiv \operatorname{Ad} \pi(v)$ if and only if

A description of \sim on $\mathcal{C}(H)$

For u and v in $\mathcal{C}(H)$ we have $\operatorname{Ad} u \equiv \operatorname{Ad} v$ iff $u=z v$ for $z \in \mathbb{C}$, but that fact is of no use.

Lemma
For u and v in $\mathcal{B}(H)$ such that $\pi(u)$ and $\pi(v)$ are unitaries in $\mathcal{C}(H)$ we have $\operatorname{Ad} \pi(u) \equiv \operatorname{Ad} \pi(v)$ if and only if there exists $z \in \mathbb{T}$ such that $u-z v$ is compact.

Choosing the unitaries

For $\aleph_{0} \leq \xi$ pick v_{ξ} so that

1. Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$, and

Choosing the unitaries

For $\aleph_{0} \leq \xi$ pick v_{ξ} so that

1. $\operatorname{Ad} v_{\xi}$ is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$, and
2. $v_{\aleph_{0}}-p_{\aleph_{0}} v_{\xi}$ is compact.

Choosing the unitaries

For $\aleph_{0} \leq \xi$ pick v_{ξ} so that

1. Ad v_{ξ} is a representation of $\Phi \upharpoonright \mathcal{C}_{\xi}$, and
2. $v_{\aleph_{0}}-p_{\aleph_{0}} v_{\xi}$ is compact.

Then for all $\aleph_{0} \leq \eta<\xi$ we have that

$$
v_{\eta}-p_{\eta} v_{\xi}
$$

is compact.

Let

$$
X_{\xi}=\left\{w \in \mathcal{B}_{\xi}: w-v_{\xi} \in \mathcal{K}_{\xi}\right\}
$$

considered as a metric space wrt

$$
d_{\xi}(u, w)=\|u-w\|
$$

Let

$$
X_{\xi}=\left\{w \in \mathcal{B}_{\xi}: w-v_{\xi} \in \mathcal{K}_{\xi}\right\}
$$

considered as a metric space wrt

$$
d_{\xi}(u, w)=\|u-w\|
$$

and let $\pi_{\xi \eta}: X_{\xi} \rightarrow X_{\eta}$ be

$$
\pi_{\xi \eta}(w)=p_{\eta} w p_{\eta}
$$

Let

$$
X_{\xi}=\left\{w \in \mathcal{B}_{\xi}: w-v_{\xi} \in \mathcal{K}_{\xi}\right\}
$$

considered as a metric space wrt

$$
d_{\xi}(u, w)=\|u-w\|
$$

and let $\pi_{\xi \eta}: X_{\xi} \rightarrow X_{\eta}$ be

$$
\pi_{\xi \eta}(w)=p_{\eta} w p_{\eta}
$$

Fact
$T=\left\langle X_{\xi}, \pi_{\xi \eta}: \omega \leq \eta<\xi<\omega_{1}\right\rangle$ is a Polish ω_{1}-tree.

Assume T has an ω_{1}-branch, w_{ξ}, for $\xi<\omega_{1}$.
Define $w \in \mathcal{B}\left(\ell_{2}\left(\aleph_{1}\right)\right)$ by

$$
w(x)=\lim _{\xi \rightarrow \omega_{1}} w_{\xi}(x)
$$

Assume T has an ω_{1}-branch, w_{ξ}, for $\xi<\omega_{1}$.
Define $w \in \mathcal{B}\left(\ell_{2}\left(\aleph_{1}\right)\right)$ by

$$
w(x)=\lim _{\xi \rightarrow \omega_{1}} w_{\xi}(x)
$$

Then $\operatorname{Ad} \pi(w)$ implements Φ.

Assume T has an ω_{1}-branch, w_{ξ}, for $\xi<\omega_{1}$.
Define $w \in \mathcal{B}\left(\ell_{2}\left(\aleph_{1}\right)\right)$ by

$$
w(x)=\lim _{\xi \rightarrow \omega_{1}} w_{\xi}(x)
$$

Then $\operatorname{Ad} \pi(w)$ implements Φ.
So we may assume T has no ω_{1}-branches.

The 'local' tree

For $a \in \mathcal{B}_{\aleph_{1}}$ define

$$
X(a)_{\xi}=\left\{w a w^{*}: w \in X_{\xi}\right\}
$$

wrt the norm metric and $\pi_{\xi \eta}: X(a)_{\xi} \rightarrow X(a)_{\eta}$ via

$$
\pi_{\xi \eta}\left(w^{2} w^{*}\right)=p_{\eta} w a w^{*} p_{\eta} .
$$

The 'local' tree

For $a \in \mathcal{B}_{\aleph_{1}}$ define

$$
X(a)_{\xi}=\left\{w a w^{*}: w \in X_{\xi}\right\}
$$

wrt the norm metric and $\pi_{\xi \eta}: X(a)_{\xi} \rightarrow X(a)_{\eta}$ via

$$
\pi_{\xi \eta}\left(w a w^{*}\right)=p_{\eta} w a w^{*} p_{\eta} .
$$

Lemma

1. Each $T(a)$ is a Polish ω_{1}-tree.

The 'local' tree

For $a \in \mathcal{B}_{\aleph_{1}}$ define

$$
X(a)_{\xi}=\left\{w a w^{*}: w \in X_{\xi}\right\}
$$

wrt the norm metric and $\pi_{\xi \eta}: X(a)_{\xi} \rightarrow X(a)_{\eta}$ via

$$
\pi_{\xi \eta}\left(w a w^{*}\right)=p_{\eta} w a w^{*} p_{\eta} .
$$

Lemma

1. Each $T(a)$ is a Polish ω_{1}-tree.
2. $T(a)$ has an ω_{1}-branch, defined by $\Phi_{*}(a)$.

The 'local' tree

For $a \in \mathcal{B}_{\aleph_{1}}$ define

$$
X(a)_{\xi}=\left\{w a w^{*}: w \in X_{\xi}\right\}
$$

wrt the norm metric and $\pi_{\xi \eta}: X(a)_{\xi} \rightarrow X(a)_{\eta}$ via

$$
\pi_{\xi \eta}\left(w a w^{*}\right)=p_{\eta} w a w^{*} p_{\eta} .
$$

Lemma

1. Each $T(a)$ is a Polish ω_{1}-tree.
2. $T(a)$ has an ω_{1}-branch, defined by $\Phi_{*}(a)$.

We add a generic $a \in \mathcal{B}_{\aleph_{1}}$ such that $T(a)$ has no ω_{1}-branches.

Adding a generic operator

Consider the forcing \mathbb{P}_{Z} with conditions $p=\left(F_{p}, M_{p}\right)$, where $F_{p} \subseteq Z$ is finite and M_{p} is a matrix over $\mathbb{Q}+i \mathbb{Q}$ indexed by $F_{p} \times F_{p}$ such that $\left\|M_{p}\right\|<1$.

Adding a generic operator

Consider the forcing \mathbb{P}_{Z} with conditions $p=\left(F_{p}, M_{p}\right)$, where $F_{p} \subseteq Z$ is finite and M_{p} is a matrix over $\mathbb{Q}+i \mathbb{Q}$ indexed by $F_{p} \times F_{p}$ such that $\left\|M_{p}\right\|<1$.
Let $p \leq q$ iff $F_{p} \supseteq F_{q}$ and M_{p} extends M_{q}.

Adding a generic operator

Consider the forcing \mathbb{P}_{Z} with conditions $p=\left(F_{p}, M_{p}\right)$, where $F_{p} \subseteq Z$ is finite and M_{p} is a matrix over $\mathbb{Q}+i \mathbb{Q}$ indexed by $F_{p} \times F_{p}$ such that $\left\|M_{p}\right\|<1$.
Let $p \leq q$ iff $F_{p} \supseteq F_{q}$ and M_{p} extends M_{q}.
Lemma
If Z is countable then \mathbb{P}_{Z} is ccc.

Adding a generic operator

Consider the forcing \mathbb{P}_{Z} with conditions $p=\left(F_{p}, M_{p}\right)$, where $F_{p} \subseteq Z$ is finite and M_{p} is a matrix over $\mathbb{Q}+i \mathbb{Q}$ indexed by $F_{p} \times F_{p}$ such that $\left\|M_{p}\right\|<1$.
Let $p \leq q$ iff $F_{p} \supseteq F_{q}$ and M_{p} extends M_{q}.
Lemma
If Z is countable then \mathbb{P}_{Z} is ccc.
(\mathbb{P}_{Z} is essentially adding a Cohen real to the unit ball of $\mathcal{B}\left(\ell_{2}(Z)\right)$ in the weak operator topology.)

Bad news

Bad news

$\mathbb{P}_{\aleph_{1}}$ collapses \aleph_{1}.

Bad news

$\mathbb{P}_{\aleph_{1}}$ collapses \aleph_{1}.
Let \mathbb{P} be the finite support product of \aleph_{1} copies of $\mathbb{P}_{\aleph_{0}}$.

Bad news

$\mathbb{P}_{\aleph_{1}}$ collapses \aleph_{1}.
Let \mathbb{P} be the finite support product of \aleph_{1} copies of $\mathbb{P}_{\aleph_{0}}$. Then \mathbb{P} is ccc and it adds a generic element a to $\mathcal{D}\left[\mathbf{C}_{\Phi}\right]$.

Bad news and good news

$\mathbb{P}_{\aleph_{1}}$ collapses \aleph_{1}.
Let \mathbb{P} be the finite support product of \aleph_{1} copies of $\mathbb{P}_{\aleph_{0}}$.
Then \mathbb{P} is ccc and it adds a generic element a to $\mathcal{D}\left[\mathbf{C}_{\Phi}\right]$.
Lemma
If T has no cofinal branch, then \mathbb{P} forces that $T(a)$ has no cofinal branch.

Putting it all together

Let $\varepsilon>0$ and \mathbb{Q} be a ccc forcing that ε-specializes a subtree of $T(g)$.

Putting it all together

Let $\varepsilon>0$ and \mathbb{Q} be a ccc forcing that ε-specializes a subtree of $T(g)$.
Applying MA to $\mathbb{P} * \dot{\mathbb{Q}}$, find $g \in \mathcal{B}_{\aleph_{1}}$ such that $T(a)$ has (cofinal) ε-special subtree.

Putting it all together

Let $\varepsilon>0$ and \mathbb{Q} be a ccc forcing that ε-specializes a subtree of $T(g)$.
Applying MA to $\mathbb{P} * \dot{\mathbb{Q}}$, find $g \in \mathcal{B}_{\aleph_{1}}$ such that $T(a)$ has (cofinal) ε-special subtree.
Lemma
If $T(a)$ has a cofinal branch then every cofinal subtree of $T(g)$ has a cofinal branch.

Putting it all together

Let $\varepsilon>0$ and \mathbb{Q} be a ccc forcing that ε-specializes a subtree of $T(g)$.
Applying MA to $\mathbb{P} * \dot{\mathbb{Q}}$, find $g \in \mathcal{B}_{\aleph_{1}}$ such that $T(a)$ has (cofinal) ε-special subtree.
Lemma
If $T(a)$ has a cofinal branch then every cofinal subtree of $T(g)$ has a cofinal branch.

Proof.
$T(a)$ is coherent because $\mathcal{K}_{\aleph_{1}}$ is the closure of finite rank operators (see the next slide).

Putting it all together

Let $\varepsilon>0$ and \mathbb{Q} be a ccc forcing that ε-specializes a subtree of $T(g)$.
Applying MA to $\mathbb{P} * \dot{\mathbb{Q}}$, find $g \in \mathcal{B}_{\aleph_{1}}$ such that $T(a)$ has (cofinal) ε-special subtree.

Lemma
If $T(a)$ has a cofinal branch then every cofinal subtree of $T(g)$ has a cofinal branch.

Proof.
$T(a)$ is coherent because $\mathcal{K}_{\aleph_{1}}$ is the closure of finite rank operators (see the next slide).
Since this is a contradiction, we conclude that T has a cofinal branch, hence Φ is inner. \square

Coherent Polish ω_{1}-trees

A Polish ω_{1}-tree $T=\left\langle X_{\xi}, \pi_{\xi \eta}, \eta<\xi<\omega_{1}\right\rangle$ is coherent

Coherent Polish ω_{1}-trees

A Polish ω_{1}-tree $T=\left\langle X_{\xi}, \pi_{\xi \eta}, \eta<\xi<\omega_{1}\right\rangle$ is coherent if there is a set Z such that

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ,

Coherent Polish ω_{1}-trees

A Polish ω_{1}-tree $T=\left\langle X_{\xi}, \pi_{\xi \eta}, \eta<\xi<\omega_{1}\right\rangle$ is coherent if there is a set Z such that

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ,
2. $\pi_{\xi \eta}(x)=x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta<\xi<\omega_{1}$,

Coherent Polish ω_{1}-trees

A Polish ω_{1}-tree $T=\left\langle X_{\xi}, \pi_{\xi \eta}, \eta<\xi<\omega_{1}\right\rangle$ is coherent if there is a set Z such that

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ,
2. $\pi_{\xi \eta}(x)=x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta<\xi<\omega_{1}$,
3. For all x, y in X_{ξ} and $\varepsilon>0$ there is a finite $F \subseteq \xi$ such that

$$
\inf _{y^{\prime}} d_{\xi}\left(x, y^{\prime}\right)<\varepsilon
$$

Coherent Polish ω_{1}-trees

A Polish ω_{1}-tree $T=\left\langle X_{\xi}, \pi_{\xi \eta}, \eta<\xi<\omega_{1}\right\rangle$ is coherent if there is a set Z such that

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ,
2. $\pi_{\xi \eta}(x)=x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta<\xi<\omega_{1}$,
3. For all x, y in X_{ξ} and $\varepsilon>0$ there is a finite $F \subseteq \xi$ such that

$$
\inf _{y^{\prime}} d_{\xi}\left(x, y^{\prime}\right)<\varepsilon
$$

with $y^{\prime} \in X_{\xi}$ satisfying

$$
\left\{\zeta<\xi: y^{\prime}(\zeta) \neq y(\zeta)\right\} \subseteq F
$$

Coherent Polish ω_{1}-trees

A Polish ω_{1}-tree $T=\left\langle X_{\xi}, \pi_{\xi \eta}, \eta<\xi<\omega_{1}\right\rangle$ is coherent if there is a set Z such that

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ,
2. $\pi_{\xi \eta}(x)=x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta<\xi<\omega_{1}$,
3. For all x, y in X_{ξ} and $\varepsilon>0$ there is a finite $F \subseteq \xi$ such that

$$
\inf _{y^{\prime}} d_{\xi}\left(x, y^{\prime}\right)<\varepsilon
$$

with $y^{\prime} \in X_{\xi}$ satisfying

$$
\left\{\zeta<\xi: y^{\prime}(\zeta) \neq y(\zeta)\right\} \subseteq F
$$

Lemma

If a coherent $P \omega_{1}$-tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.

Coherent Polish ω_{1}-trees

A Polish ω_{1}-tree $T=\left\langle X_{\xi}, \pi_{\xi \eta}, \eta<\xi<\omega_{1}\right\rangle$ is coherent if there is a set Z such that

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ,
2. $\pi_{\xi \eta}(x)=x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta<\xi<\omega_{1}$,
3. For all x, y in X_{ξ} and $\varepsilon>0$ there is a finite $F \subseteq \xi$ such that

$$
\inf _{y^{\prime}} d_{\xi}\left(x, y^{\prime}\right)<\varepsilon
$$

with $y^{\prime} \in X_{\xi}$ satisfying

$$
\left\{\zeta<\xi: y^{\prime}(\zeta) \neq y(\zeta)\right\} \subseteq F
$$

Lemma

If a coherent $P \omega_{1}$-tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.
In particular, it cannot have a cofinal special subtree.

No surprises beyond \aleph_{1}

No surprises beyond \aleph_{1}

Theorem (Farah-McKenney-Schimmerling, 2009)
Assume PFA. Then all automorphisms of \mathcal{C}_{κ} are inner, for every infinite cardinal κ.

No surprises beyond \aleph_{1}

Theorem (Farah-McKenney-Schimmerling, 2009)
Assume PFA. Then all automorphisms of \mathcal{C}_{κ} are inner, for every infinite cardinal κ.

The proof involves uniformization of 'Polish coherent families' using PFA.

No surprises beyond \aleph_{1}

Theorem (Farah-McKenney-Schimmerling, 2009)
Assume PFA. Then all automorphisms of \mathcal{C}_{κ} are inner, for every infinite cardinal κ.
The proof involves uniformization of 'Polish coherent families' using PFA.

Next time
What we don't know.

