All automorphisms of all Calkin algebras Part I_{II}^{I} : The introduction

Ilijas Farah

York University

RIMS, Kyoto, November 2009

Trivial automorphisms

An automorphism Φ of $\mathcal{P}(\mathbb{N})/\mathsf{Fin}$ is *trivial* if there is $h: \mathbb{N} \to \mathbb{N}$ such that the diagram

commutes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (W. Rudin, 1957) CH implies $\mathcal{P}(\mathbb{N})$ / Fin has 2^c automorphisms

Theorem (W. Rudin, 1957) CH implies $\mathcal{P}(\mathbb{N})/$ Fin has 2^c automorphisms and only c of them are trivial.

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/$ Fin has 2^c automorphisms and only c of them are trivial.

Theorem (Shelah, 1979)

If ZFC is consistent then so is ZFC+'All automorphisms of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ are trivial.'

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/$ Fin has $2^{\mathfrak{c}}$ automorphisms and only \mathfrak{c} of them are trivial.

Theorem (Shelah–Steprans, 1989)

PFA implies 'All automorphisms of $\mathcal{P}(\mathbb{N})/$ Fin are trivial.'

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/$ Fin has $2^{\mathfrak{c}}$ automorphisms and only \mathfrak{c} of them are trivial.

Theorem (Velickovic, 1989)

TA+MA implies 'All automorphisms of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ are trivial.'

Theorem (W. Rudin, 1957)

CH implies $\mathcal{P}(\mathbb{N})/$ Fin has 2^c automorphisms and only c of them are trivial.

Theorem (Velickovic, 1989)

TA+MA implies 'All automorphisms of $\mathcal{P}(\mathbb{N})/$ Fin are trivial.'

TA:=Todorcevic's Axiom (aka OCA)

TA Assume X is a separable metric space and $K \subseteq [X]^2$ is open. Then either there is an uncountable $Y \subseteq X$ such that $[Y]^2 \subseteq K$ or $X = \bigcup_{n < \omega} X_n$ so that $[X_n]^2 \cap K = \emptyset$ for all n.

Rigidity beyond \aleph_0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Velickovic, 1989) TA+MA implies all automorphisms of $\mathcal{P}(\aleph_1)$ /Fin are trivial.

Rigidity beyond \aleph_0

Theorem (Velickovic, 1989)

TA+MA implies all automorphisms of $\mathcal{P}(\aleph_1)/\text{Fin}$ are trivial. PFA implies all automorphisms of $\mathcal{P}(\kappa)/\text{Fin}$ are trivial, for every infinite cardinal κ .

Stone duality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stone duality

Theorem (Shelah, 1979)

If ZFC is consistent then so is ZFC+'every autohomeomorphism of $\beta \mathbb{N} \setminus \mathbb{N}$ has an extension to a continuous self-map of $\beta \mathbb{N}$.

Stone duality

Theorem (Shelah, 1979)

If ZFC is consistent then so is ZFC+'every autohomeomorphism of $\beta \mathbb{N} \setminus \mathbb{N}$ has an extension to a continuous self-map of $\beta \mathbb{N}$.

Theorem (Farah, 1998)

TA+MA implies that if X is a 0-dimensional locally compact Polish space then every autohomeomorphism of $\beta X \setminus X$ has an extension to a continuous self-map of βX .

More rigidity

Conjecture (Farah, 2000)

PFA implies that all isomorphisms $\Phi \colon \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ are trivial, whenever \mathcal{I} and \mathcal{J} are analytic ideals.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

More rigidity

Conjecture (Farah, 2000)

PFA implies that all isomorphisms $\Phi \colon \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ are trivial, whenever \mathcal{I} and \mathcal{J} are analytic ideals.

Theorem (Farah, 1997–2004)

Confirmed the conjecture for many ideals, including all nonpathological ideals.

More rigidity

Conjecture (Farah, 2000)

PFA implies that all isomorphisms $\Phi \colon \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ are trivial, whenever \mathcal{I} and \mathcal{J} are analytic ideals.

Theorem (Farah, 1997-2004)

Confirmed the conjecture for many ideals, including all nonpathological ideals.

Corollary

PFA implies that quotients over two nonpathological ideals are isomorphic if and only if the ideals are isomorphic.

Boolean groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

commutes then we say F is a *representation* of Φ .

Boolean groups

commutes then we say F is a *representation* of Φ .

$$(\mathcal{P}(\mathbb{N}),\Delta)\cong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Boolean groups

commutes then we say F is a *representation* of Φ .

$$(\mathcal{P}(\mathbb{N}),\Delta)\cong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}}$$

A group isomorphism $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ is *trivial* if it has a representation that is a group homomorphism.

rigidity

Theorem (Farah, 2000)

Every group isomorphism $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ that has a Borel-measurable representation is trivial whenever \mathcal{J} is a nonpathological ideal.

rigidity

Theorem (Farah, 2000)

Every group isomorphism $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ that has a Borel-measurable representation is trivial whenever \mathcal{J} is a nonpathological ideal.

Lemma

If \mathcal{I} is a proper analytic ideal then $\mathcal{P}(\mathbb{N})/\mathcal{I} \cong \mathcal{P}(\mathbb{N})$ (as a group).

Non-rigidity

Theorem (Farah, 2000)

Every group isomorphism $\Phi: \mathcal{P}(\mathbb{N})/\mathcal{I} \to \mathcal{P}(\mathbb{N})/\mathcal{J}$ that has a Borel-measurable representation is trivial whenever \mathcal{J} is a nonpathological ideal.

Lemma

If \mathcal{I} is a proper analytic ideal then $\mathcal{P}(\mathbb{N})/\mathcal{I} \cong \mathcal{P}(\mathbb{N})$ (as a group).

Proof.

Both are \mathbb{F}_2 -vector spaces of dimension 2^{\aleph_0} .

Gelfand–Naimark–Segal duality

For a compact Hausdorff space X let C(X) be the C*-algebra of all continuous complex-valued functions on X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gelfand–Naimark–Segal duality

For a compact Hausdorff space X let C(X) be the C*-algebra of all continuous complex-valued functions on X.

$$\begin{array}{ccc} \beta \mathbb{N} & \longleftrightarrow & C(\beta \mathbb{N}) \\ \beta \mathbb{N} \setminus \mathbb{N} & \longleftrightarrow & C(\beta \mathbb{N} \setminus \mathbb{N}) \end{array}$$

Gelfand–Naimark–Segal duality

For a compact Hausdorff space X let C(X) be the C*-algebra of all continuous complex-valued functions on X.

$$\begin{array}{ccc} \beta \mathbb{N} & \longleftrightarrow & C(\beta \mathbb{N}) \\ \beta \mathbb{N} \setminus \mathbb{N} & \longleftrightarrow & C(\beta \mathbb{N} \setminus \mathbb{N}) \end{array}$$

Theorem (Shelah, 1979)

If ZFC is consistent then so is 'all automorphisms of $C(\beta \mathbb{N} \setminus \mathbb{N})$ are 'trivial.'

The Calkin algebra

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space. $\mathcal{B}(H)$: The algebra of bounded linear operators. $\mathcal{K}(H)$: The ideal of compact operators. $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$: Quotient C*-algebra, the so-called *Calkin algebra*.

The Calkin algebra

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space. $\mathcal{B}(H)$: The algebra of bounded linear operators. $\mathcal{K}(H)$: The ideal of compact operators. $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$: Quotient C*-algebra, the so-called *Calkin algebra*.

Question (Brown–Douglas–Fillmore, 1977)

Are all automorphisms Φ of the Calkin algebra inner?

The Calkin algebra

 $H = \ell_2(\aleph_0)$: an infinite-dimensional complex Hibert space. $\mathcal{B}(H)$: The algebra of bounded linear operators. $\mathcal{K}(H)$: The ideal of compact operators. $\mathcal{C}(H) = \mathcal{B}(H)/\mathcal{K}(H)$: Quotient C*-algebra, the so-called *Calkin algebra*.

Question (Brown–Douglas–Fillmore, 1977)

Are all automorphisms Φ of the Calkin algebra inner?

As usually, Φ is *inner* if for some $u \in C(H)$ we have

$$\Phi(a) = uau^*$$

for all a.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Phillips–Weaver, 2006) CH implies C(H) has 2^c automorphisms, (and only c inner automorphisms).

Theorem (Phillips–Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007) If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Phillips–Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Theorem (Phillips–Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Question

What can be said in the case when H is nonseparable?

Theorem (Phillips–Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Question

What can be said in the case when H is nonseparable?

Answer

All kinds of things

Theorem (Phillips–Weaver, 2006)

CH implies C(H) has $2^{\mathfrak{c}}$ automorphisms, (and only \mathfrak{c} inner automorphisms).

Proposition (Farah, Geschke 2007)

If $\mathfrak{d} = \aleph_1$ then $\mathcal{C}(H)$ has 2^{\aleph_1} automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Question

What can be said in the case when H is nonseparable?

Answer

All kinds of things but not enough.