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Trivial automorphisms

An automorphism Φ of P(N)/Fin is trivial if there is h : N→ N
such that the diagram

P(N)
X 7→h−1(X ) //

πFin

��

P(N)

πFin

��
P(N)/Fin

Φ
// P(N)/Fin

commutes.



Rigidity I

Theorem (W. Rudin, 1957)

CH implies P(N)/Fin has 2c automorphisms

and only c of them
are trivial.

TA:=Todorcevic’s Axiom (aka OCA)

TA Assume X is a separable metric space and K ⊆ [X ]2 is open.
Then either there is an uncountable Y ⊆ X such that
[Y ]2 ⊆ K or X =

⋃
n<ω Xn so that [Xn]2 ∩ K = ∅ for all n.
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Stone duality

Boolean algebra Topological space

P(N) ←→ βN
P(N/Fin) ←→ βN \ N

Theorem (Shelah, 1979)

If ZFC is consistent then so is ZFC+‘every autohomeomorphism of
βN \ N has an extension to a continuous self-map of βN.

Theorem (Farah, 1998)

TA+MA implies that if X is a 0-dimensional locally compact
Polish space then every autohomeomorphism of βX \ X has an
extension to a continuous self-map of βX .
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More rigidity

Conjecture (Farah, 2000)

PFA implies that all isomorphisms Φ: P(N)/I → P(N)/J are
trivial, whenever I and J are analytic ideals.

Theorem (Farah, 1997–2004)

Confirmed the conjecture for many ideals, including all
nonpathological ideals.

Corollary

PFA implies that quotients over two nonpathological ideals are
isomorphic if and only if the ideals are isomorphic.
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representation that is a group homomorphism.
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all continuous complex-valued functions on X .
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The Calkin algebra

H = `2(ℵ0): an infinite-dimensional complex Hibert space.
B(H): The algebra of bounded linear operators.
K(H): The ideal of compact operators.
C(H) = B(H)/K(H): Quotient C*-algebra, the so-called Calkin
algebra.

Question (Brown–Douglas–Fillmore, 1977)

Are all automorphisms Φ of the Calkin algebra inner?

As usually, Φ is inner if for some u ∈ C(H) we have

Φ(a) = uau∗

for all a.
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A rather complete picture

Theorem (Phillips–Weaver, 2006)

CH implies C(H) has 2c automorphisms, (and only c inner
automorphisms).

Proposition (Farah, Geschke 2007)

If d = ℵ1 then C(H) has 2ℵ1 automorphisms.

Theorem (Farah, 2007)

TA implies all automorphisms of C(H) are inner.

Question
What can be said in the case when H is nonseparable?

Answer
All kinds of things but not enough.
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