All automorphisms of all Calkin algebras Part I: Polish Aronzajn trees

Ilijas Farah

York University

RIMS, Kyoto, November 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition An ω_1 -tree

Definition

An ω_1 -tree is a sequence X_{ξ} , $\xi < \omega_1$ of countable sets and commuting surjections for $\eta < \xi$

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

An ω_1 -tree is a sequence X_{ξ} , $\xi < \omega_1$ of countable sets and commuting surjections for $\eta < \xi$

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

An ω_1 -tree is Aronszajn if

$$\lim_{\xi < \omega_1} X_{\xi} = \emptyset.$$

Definition

An ω_1 -tree is a sequence X_{ξ} , $\xi < \omega_1$ of countable sets and commuting surjections for $\eta < \xi$

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

An ω_1 -tree is Aronszajn if

$$\lim_{\xi < \omega_1} X_{\xi} = \emptyset.$$

An ω_1 -tree is *special* if there exist antichains \mathcal{A}_n , for $n < \omega$, such that

$$\bigcup_{\xi<\omega_1}X_{\xi}=\bigcup_{n<\omega_1}\mathcal{A}_n.$$

Polish Aronszajn trees

Definition

A Polish ω_1 -tree is a sequence (X_{ξ}, d_{ξ}) , $\xi < \omega_1$ of Polish spaces and commuting surjective contractions for $\eta < \xi$

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

Polish Aronszajn trees

Definition

A Polish ω_1 -tree is a sequence $(X_{\xi}, d_{\xi}), \xi < \omega_1$ of Polish spaces and commuting surjective contractions for $\eta < \xi$

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

A Polish ω_1 -tree is a Polish Aronszajn tree (PA-tree) if

$$\lim_{\xi < \omega_1} X_{\xi} = \emptyset.$$

Special PA-trees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem What is the right definition of a 'special PA-tree?'

Special PA-trees

Problem

What is the right definition of a 'special PA-tree?' On a $P\omega_1$ -tree (X_{ξ}, d_{ξ}) , $\xi < \omega_1$ define a pseudo-metric

$$d(x,y) = d_{\eta}(\pi_{\xi\eta}(x),y)$$

 $\text{ if } x \in X_{\xi} \text{, } y \in X_{\eta} \text{ and } \xi \geq \eta.$

Special PA-trees

Problem

What is the right definition of a 'special PA-tree?' On a $P\omega_1$ -tree (X_{ξ}, d_{ξ}) , $\xi < \omega_1$ define a pseudo-metric

$$d(x,y) = d_{\eta}(\pi_{\xi\eta}(x),y)$$

if $x \in X_{\xi}$, $y \in X_{\eta}$ and $\xi \ge \eta$. Some $\mathcal{A} \subseteq \bigcup_{\xi} X_{\xi}$ is an ε -antichain if $d(x, y) > \varepsilon$ for $x \ne y$ in \mathcal{A} .

ε -special P ω_1 -trees

Definition

A P ω_1 -tree is ε -special if there are ε -antichains \mathcal{A}_n , for $n \in \mathbb{N}$, such that $(\bigcup_n \mathcal{A}_n) \cap X_{\xi}$ is dense in X_{ξ} for each $\xi < \omega_1$.

ε -special P ω_1 -trees

Definition

A P ω_1 -tree is ε -special if there are ε -antichains \mathcal{A}_n , for $n \in \mathbb{N}$, such that $(\bigcup_n \mathcal{A}_n) \cap X_{\xi}$ is dense in X_{ξ} for each $\xi < \omega_1$.

Lemma

If a PA-tree is ε -special then it has no cofinal branches.

Fix a PA-tree T:

 X_{ξ} , for $\xi < \omega_1$ and $\pi_{\xi\eta} \colon X_{\xi} \to X_{\eta}$ for $\omega_1 > \xi \ge \eta$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fix $\varepsilon > 0$.

Fix a PA-tree T:

$$X_{\xi}, \text{ for } \xi < \omega_1 \text{ and } \pi_{\xi\eta} \colon X_{\xi} \to X_{\eta} \text{ for } \omega_1 > \xi \geq \eta.$$

Fix
$$\varepsilon > 0$$
.
Some $B = \{x_{\xi} : x < \omega_1\}$ is an ε -branch of T if

Fix a PA-tree T:

$$X_{\xi}, \text{ for } \xi < \omega_1 \text{ and } \pi_{\xi\eta} \colon X_{\xi} o X_{\eta} \text{ for } \omega_1 > \xi \geq \eta.$$

Fix
$$\varepsilon > 0$$
.
Some $B = \{x_{\xi} : x < \omega_1\}$ is an ε -branch of T if
1. $x_{\xi} \in X_{\xi}$ for all ξ , and

Fix a PA-tree T:

$$X_{\xi}, \text{ for } \xi < \omega_1 \text{ and } \pi_{\xi\eta} \colon X_{\xi} o X_{\eta} \text{ for } \omega_1 > \xi \geq \eta.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix
$$\varepsilon > 0$$
.
Some $B = \{x_{\xi} : x < \omega_1\}$ is an ε -branch of T if
1. $x_{\xi} \in X_{\xi}$ for all ξ , and
2. $d(x_{\eta}, x_{\xi}) < \varepsilon$ for all $\xi > \eta$.

The key lemma

Lemma

A $P\omega_1$ -tree T either has an ε -branch or a ccc forcing adds an $\varepsilon/2$ -antichain.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The key lemma

Lemma

A $P\omega_1$ -tree T either has an ε -branch or a ccc forcing adds an ε /2-antichain.

Pf. Fix a countable dense $Z_{\xi} \subseteq X_{\xi}$ for each ξ . Let

$$\mathbb{P} = \{ p \in \bigcup_{\xi} Z_{\xi} \colon p \text{ is a finite } \varepsilon/2\text{-antichain} \}$$

ordered by $p \leq q$ iff $p \supseteq q$.

The key lemma-the right formulation

Lemma

A $P\omega_1$ -tree T either has an ε -branch or a ccc forcing adds an $\varepsilon/2$ -antichain.

Pf. Fix a countable dense $Z_{\xi} \subseteq X_{\xi}$ for each ξ . Let

$$\mathbb{P} = \{ p \in \bigcup_{\xi} Z_{\xi} \colon p \text{ is a finite } \varepsilon/2\text{-antichain} \}$$

ordered by $p \leq q$ iff $p \supseteq q$. We prove that is T has no ε -branches then \mathbb{P} is powerfully ccc, i.e., $\mathbb{P}^{<\aleph_0}$ is ccc.

Proving \mathbb{P} is (powerfully) ccc

Fix p_{ξ} , for $\xi < \omega_1$, in \mathbb{P} . We may assume

$$p_{\xi} = p \cup r_{\xi}$$

and that for some n

$$r_{\xi} = \{x_{\xi}^0, \dots x_{\xi}^{n-1}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proving \mathbb{P} is (powerfully) ccc

Fix p_{ξ} , for $\xi < \omega_1$, in \mathbb{P} . We may assume

$$p_{\xi} = p \cup r_{\xi}$$

and that for some n

$$r_{\xi} = \{x_{\xi}^0, \dots x_{\xi}^{n-1}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix a uniform ultrafilter \mathcal{U} on ω_1 .

Still proving \mathbb{P} is (powerfully) ccc

For each ξ fix $A_{\xi} \in \mathcal{U}$ such that for some

$$s_{\xi}: n^2 \rightarrow 2$$

all $\eta \in A_{\xi}$ and all $(i,j) \in n^2$ we have

$$d(x^i_{\xi},x^j_{\eta}) < rac{arepsilon}{2} ext{ iff } s_{\xi}(i,j) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Still proving \mathbb{P} is (powerfully) ccc

For each ξ fix $A_{\xi} \in \mathcal{U}$ such that for some

$$s_{\xi}: n^2 \rightarrow 2$$

all $\eta \in A_{\xi}$ and all $(i,j) \in n^2$ we have

$$d(x^i_{\xi},x^j_{\eta}) < rac{arepsilon}{2} ext{ iff } s_{\xi}(i,j) = 0.$$

Fix $A \in \mathcal{U}$ and s such that for all $\xi \in A$ we have $s_{\xi} = s$.

Case 1: s(i,j) = 0 for some *i* and *j*.

$$d(x^i_{\xi},x^i_{\eta}) \leq d(\xi^i,x^j_{\eta}) + d(x^j_{\eta},x^i_{\xi}) < arepsilon$$

(日) (日) (日) (日) (日) (日) (日) (日)

therefore $\{x_{\xi}^{i}: \xi \in A\}$ defines an ε -branch.

$$d(x^i_{\xi},x^i_{\eta}) \leq d(\xi^i,x^j_{\eta}) + d(x^j_{\eta},x^i_{\xi}) < arepsilon$$

therefore $\{x_{\xi}^{i}: \xi \in A\}$ defines an ε -branch. **Case 2:** s(i,j) = 1 for all i, j.

$$d(x^i_{\xi},x^i_{\eta}) \leq d(\xi^i,x^j_{\eta}) + d(x^j_{\eta},x^i_{\xi}) < arepsilon$$

therefore $\{x_{\xi}^{i}: \xi \in A\}$ defines an ε -branch. **Case 2:** s(i,j) = 1 for all i,j. Then p_{ξ} , for $\xi \in A$, is linked hence \mathbb{P} is ccc.

$$d(x^i_{\xi},x^i_{\eta}) \leq d(\xi^i,x^j_{\eta}) + d(x^j_{\eta},x^i_{\xi}) < arepsilon$$

therefore $\{x_{\xi}^{i}: \xi \in A\}$ defines an ε -branch. **Case 2:** s(i,j) = 1 for all i, j. Then p_{ξ} , for $\xi \in A$, is linked hence \mathbb{P} is ccc. The same proof shows that \mathbb{P} is powerfully ccc. \Box

$$d(x^i_{\xi},x^i_{\eta}) \leq d(\xi^i,x^j_{\eta}) + d(x^j_{\eta},x^i_{\xi}) < arepsilon$$

therefore $\{x_{\xi}^{i}: \xi \in A\}$ defines an ε -branch. **Case 2:** s(i,j) = 1 for all i, j. Then p_{ξ} , for $\xi \in A$, is linked hence \mathbb{P} is ccc. The same proof shows that \mathbb{P} is powerfully ccc. \Box

Lemma MA implies that if a $P\omega_1$ -tree has no ε -branches for $\varepsilon > 0$ then it is $\varepsilon/2$ -special.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma

MA implies that if a $P\omega_1$ -tree has no ε -branches for $\varepsilon > 0$ then it is $\varepsilon/2$ -special.

Lemma

If a $P\omega_1$ -tree is ε -special then it has no $\varepsilon/2$ -branches.

We need more key lemmas

Lemma

There exists a PA-tree that has an ε -branch for all $\varepsilon > 0$ but no branches.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We need more key lemmas

Lemma

There exists a PA-tree that has an ε -branch for all $\varepsilon > 0$ but no branches.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This tree is even special.

Subtrees and an another key lemma

A sequence Y_{ξ} , $\xi < \omega_1$ is a *subtree* of a $P\omega_1$ -tree $T = \langle X_{\xi}, \pi_{\xi\eta} \rangle$ if 1. $Y_{\xi} \subseteq X_{\xi}$ for all ξ and 2. $\pi_{\xi\eta}[Y_{\xi}] \subseteq Y_{\eta}$.

Subtrees and an another key lemma

A sequence Y_{ξ} , $\xi < \omega_1$ is a *subtree* of a P ω_1 -tree $T = \langle X_{\xi}, \pi_{\xi\eta} \rangle$ if

- 1. $Y_{\xi} \subseteq X_{\xi}$ for all ξ and
- 2. $\pi_{\xi\eta}[Y_{\xi}] \subseteq Y_{\eta}$.

Lemma

If a $P\omega_1$ -tree T is such that every subtree has an ε -branch for every $\varepsilon > 0$, then T has a branch.

Pf. Pick a 1/2-branch $\langle x_{\xi}^1 \colon \xi < \omega_1 \rangle$.

Pf. Pick a 1/2-branch $\langle x_{\xi}^1 : \xi < \omega_1 \rangle$. Let $X_{\eta}^1 \subseteq X_{\eta}$ be the metric closure of

 $\{\pi_{\xi\eta}(x_{\xi}^1): \eta < \xi < \omega_1\}.$

Then $T^1 = \langle X^1_{\eta} : \eta < \omega_1 \rangle$, is a subtree of T.

Pf. Pick a 1/2-branch $\langle x_{\xi}^1 : \xi < \omega_1 \rangle$. Let $X_{\eta}^1 \subseteq X_{\eta}$ be the metric closure of

$$\{\pi_{\xi\eta}(x_{\xi}^1): \eta < \xi < \omega_1\}.$$

Then $T^1 = \langle X_{\eta}^1 : \eta < \omega_1 \rangle$, is a subtree of T. Pick a 1/4-branch x_{ξ}^2 , $\xi < \omega_1$, of T^1 .

Pf. Pick a 1/2-branch $\langle x_{\xi}^1 : \xi < \omega_1 \rangle$. Let $X_{\eta}^1 \subseteq X_{\eta}$ be the metric closure of

$$\{\pi_{\xi\eta}(x_{\xi}^1): \eta < \xi < \omega_1\}.$$

Then $T^1 = \langle X_{\eta}^1 \colon \eta < \omega_1 \rangle$, is a subtree of T. Pick a 1/4-branch x_{ξ}^2 , $\xi < \omega_1$, of T^1 . Let $X_{\eta}^2 \subseteq X_{\eta}^1$ be the metric closure of

 $\{\pi_{\xi\eta}(x_{\xi}^2)\colon \eta<\xi<\omega_1\}.$

Then $T^2 = \langle X_{\eta}^2 : \eta < \omega_1 \rangle$, is a subtree of T.

Pf. Pick a 1/2-branch $\langle x_{\xi}^1 : \xi < \omega_1 \rangle$. Let $X_{\eta}^1 \subseteq X_{\eta}$ be the metric closure of

 $\{\pi_{\xi\eta}(x_{\xi}^1): \eta < \xi < \omega_1\}.$

Then $T^1 = \langle X_{\eta}^1 : \eta < \omega_1 \rangle$, is a subtree of T. Pick a 1/4-branch x_{ξ}^2 , $\xi < \omega_1$, of T^1 . Let $X_{\eta}^2 \subseteq X_{\eta}^1$ be the metric closure of

 $\{\pi_{\xi\eta}(x_{\xi}^2)\colon \eta<\xi<\omega_1\}.$

Then $T^2 = \langle X_{\eta}^2 : \eta < \omega_1 \rangle$, is a subtree of T. Pick a 1/8-branch $x_{\xi}^3, \xi < \omega_1$, of T^1 . Let $X_{\eta}^3 \subseteq X_{\eta}^2$ be the metric closure of

$$\{\pi_{\xi\eta}(x_{\xi}^3)\colon \eta<\xi<\omega_1\}.$$

Then $T^3 = \langle X^3_\eta : \eta < \omega_1
angle$, is a subtree of T.

Pf. Pick a 1/2-branch $\langle x_{\xi}^1 : \xi < \omega_1 \rangle$. Let $X_{\eta}^1 \subseteq X_{\eta}$ be the metric closure of

$$\{\pi_{\xi\eta}(x_{\xi}^1): \eta < \xi < \omega_1\}.$$

Then $T^1 = \langle X_{\eta}^1 : \eta < \omega_1 \rangle$, is a subtree of T. Pick a 1/4-branch x_{ξ}^2 , $\xi < \omega_1$, of T^1 . Let $X_{\eta}^2 \subseteq X_{\eta}^1$ be the metric closure of

$$\{\pi_{\xi\eta}(x_{\xi}^2): \eta < \xi < \omega_1\}.$$

Then $T^2 = \langle X_\eta^2 : \eta < \omega_1 \rangle$, is a subtree of T. Pick a 1/8-branch $x_{\xi}^3, \xi < \omega_1$, of T^1 . Let $X_\eta^3 \subseteq X_\eta^2$ be the metric closure of

$$\{\pi_{\xi\eta}(x_{\xi}^3): \eta < \xi < \omega_1\}.$$

Then $T^3 = \langle X_\eta^3 : \eta < \omega_1 \rangle$, is a subtree of T.

For each η the sequence x_{ξ}^n , for $n < \omega$, is a Cauchy sequence. Then $x_{\xi} = \lim_n x_{\xi}^n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

defines a cofinal branch in T.

Proposition

MA implies that every $P\omega_1$ -tree T either has a branch or a (cofinal) ε -special subtree for some $\varepsilon > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

MA implies that every $P\omega_1$ -tree T either has a branch or a (cofinal) ε -special subtree for some $\varepsilon > 0$.

Having an $\varepsilon\text{-special subtree does not guarantee }\mathcal{T}$ has no cofinal branches. . .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

MA implies that every $P\omega_1$ -tree T either has a branch or a (cofinal) ε -special subtree for some $\varepsilon > 0$.

Having an $\varepsilon\text{-special subtree does not guarantee }\mathcal{T}$ has no cofinal branches. . .

 \ldots unless we assume something extra about T!

An ω_1 -tree *T* is *coherent* if $T \subseteq 2^{\omega_1}$ and for all *s* and *t* in *T* the set

 $\{\xi < \omega_1 \colon s(\xi) \neq t(\xi)\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is finite.

An ω_1 -tree T is *coherent* if $T \subseteq 2^{\omega_1}$ and for all s and t in T the set

 $\{\xi < \omega_1 \colon s(\xi) \neq t(\xi)\}$

is finite.

Lemma

If a coherent ω_1 -tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.

An ω_1 -tree T is *coherent* if $T \subseteq 2^{\omega_1}$ and for all s and t in T the set

 $\{\xi < \omega_1 \colon s(\xi) \neq t(\xi)\}$

is finite.

Lemma

If a coherent ω_1 -tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch. In particular, it cannot have a cofinal special subtree.

An ω_1 -tree T is *coherent* if $T \subseteq 2^{\omega_1}$ and for all s and t in T the set

 $\{\xi < \omega_1 \colon s(\xi) \neq t(\xi)\}$

is finite.

Lemma

If a coherent ω_1 -tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch. In particular, it cannot have a cofinal special subtree.

A Polish tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent*

A Polish tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. $X_{\xi} \subseteq Z^{\xi}$ for all ξ ,

A Polish tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1.
$$X_{\xi} \subseteq Z^{\xi}$$
 for all ξ ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,

A Polish tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

1.
$$X_{\xi} \subseteq Z^{\xi}$$
 for all ξ ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,

3. For all x, y in X_{ξ} and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Polish tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

with $y' \in X_{\xi}$ satisfying

$$\{\zeta < \xi \colon y'(\zeta) \neq y(\zeta)\} \subseteq F.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Polish tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

3. For all x, y in X_{ξ} and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

with $y' \in X_{\xi}$ satisfying

$$\{\zeta < \xi \colon y'(\zeta) \neq y(\zeta)\} \subseteq F.$$

Lemma

If a coherent $P\omega_1$ -tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch.

A Polish tree $T = \langle X_{\xi}, \pi_{\xi\eta}, \eta < \xi < \omega_1 \rangle$ is *coherent* if there is a set Z such that

1.
$$X_{\xi} \subseteq Z^{\xi}$$
 for all ξ ,
2. $\pi_{\xi\eta}(x) = x \upharpoonright \eta$ for $x \in X_{\xi}$ and $\eta < \xi < \omega_1$,
3. For all u with X and $z \ge 0$ there is a finite $\Gamma \subseteq \zeta$ such that

3. For all x, y in X_{ξ} and $\varepsilon > 0$ there is a finite $F \subseteq \xi$ such that

$$\inf_{y'} d_{\xi}(x, y') < \varepsilon$$

with $y' \in X_{\xi}$ satisfying

$$\{\zeta < \xi \colon y'(\zeta) \neq y(\zeta)\} \subseteq F.$$

Lemma

If a coherent $P\omega_1$ -tree has a cofinal branch, then each one of its cofinal subtrees has a cofinal branch. In particular, it cannot have a cofinal special subtree.

Let Λ be a directed set and X_{ξ} , for $\xi \in \Lambda$ a family of Polish spaces.

Let Λ be a directed set and X_{ξ} , for $\xi \in \Lambda$ a family of Polish spaces. For $\eta < \xi$ in Λ we have a contractive surjection

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Λ be a directed set and X_{ξ} , for $\xi \in \Lambda$ a family of Polish spaces. For $\eta < \xi$ in Λ we have a contractive surjection

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then $\langle X_{\xi}, \pi_{\xi\eta} \rangle$ is a Polish coherent family.

Let Λ be a directed set and X_{ξ} , for $\xi \in \Lambda$ a family of Polish spaces. For $\eta < \xi$ in Λ we have a contractive surjection

$$\pi_{\xi\eta}\colon X_{\xi}\to X_{\eta}.$$

Then $\langle X_{\xi}, \pi_{\xi\eta} \rangle$ is a Polish coherent family. It is nontrivial if

$$\varprojlim_{\xi} X_{\xi} = \emptyset.$$

Proposition

Assume PFA. If a Polish coherent family is nontrivial, then for some $\varepsilon > 0$ it has an ε -special ω_1 -subtree.