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Aronszajn trees

Definition
An wy-tree is a sequence X¢, £ < wy of countable sets and
commuting surjections for n < ¢

Ten: Xe — Xy
An wi-tree is Aronszajn if

|i<_m Xe = 0.
§<wr

An w1-tree is special if there exist antichains A, for n < w, such

that
U X =1 4.

E<wr n<wi



Polish Aronszajn trees

Definition
A Polish w-tree is a sequence (X¢, dg), & < wy of Polish spaces
and commuting surjective contractions for n < &

7T€77: Xg — X77‘



Polish Aronszajn trees

Definition
A Polish w-tree is a sequence (X¢, dg), & < wy of Polish spaces
and commuting surjective contractions for n < &

Ten Xe — Xy,

A Polish wi-tree is a Polish Aronszajn tree (PA-tree) if
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Special PA-trees

Problem
What is the right definition of a ‘special PA-tree?’

On a Pwi-tree (X¢, d¢), £ < wy define a pseudo-metric
d(Xa.y) = dT](ﬂ-fT](X)vy)

if x € Xe, y€X,and £ >n.
Some A C [J¢ X¢ is an e-antichain if d(x,y) > € for x # y in A.
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e-special Pwy-trees

Definition
A Pwi-tree is e-special if there are e-antichains A, for n € N,
such that (U, An) N X is dense in X¢ for each £ < w.

Lemma
If a PA-tree is e-special then it has no cofinal branches.
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MA and e-special trees

Fix a PA-tree T:
Xe, for £ <wp and mgy: Xe — X, for wy > € > 1.

Fix e > 0.
Some B = {x¢: x < wy} is an e-branch of T if

1o xe € Xe for all &, and
2. d(x,, x¢) < e forall &> 1.
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The key lemma—the right formulation

Lemma
A Puwi-tree T either has an e-branch or a ccc forcing adds an
e/2-antichain.

Pf. Fix a countable dense Zs C X, for each {. Let
P={pec UZE: p is a finite €/2-antichain}
£

ordered by p < q iff p D gq.
We prove that is T has no e-branches then P is powerfully ccc,
ie., P<®o s ccc.
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Proving P is (powerfully) ccc

Fix pg, for £ < wq, in P. We may assume

pe =pUre

and that for some n

-1
re = {xg,...xg }.

Fix a uniform ultrafilter & on w1.
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Still proving P is (powerfully) ccc

For each £ fix A¢ € U such that for some
S¢ - n2 — 2
all n € A¢ and all (i,j) € n? we have
P €. ..
d(x¢, x) < 5 iff se(i,j) = 0.

Fix A € U and s such that for all { € A we have s¢ = s.
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We need more key lemmas

Lemma

There exists a PA-tree that has an e-branch for all € > 0 but no
branches.

This tree is even special.
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Subtrees and an another key lemma

A sequence Y¢, £ < wi is a subtree of a Pwi-tree T = (X¢, gy if
1. Yg € X for all £ and
2. men[Yel € Vi

Lemma
If a Pwi-tree T is such that every subtree has an e-branch for
every € > 0, then T has a branch.
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Constructing an honest branch

Pf. Pick a 1/2-branch <x£1: € < wr).
Let X; C X, be the metric closure of
{ren0d): m < € < wi}.

Then T' = (X]: 7 <wi), is a subtree of T.
Pick a 1/4-branch Xg, & < wi, of T
Let Xﬁ (- X; be the metric closure of

2
{men(x€): n <& <wn}.
Then T2 = (X%: n < wi), is a subtree of T.

Pick a 1/8-branch xZ, & < wy, of T,
Let XS C Xf] be the metric closure of

{men(d): m < € < wi}.

Then T3 = (X,,3I: n < wi), is a subtree of T.



For each 7 the sequence xg, for n < w, is a Cauchy sequence. Then
— i n
Xg = I|’r7n X¢

defines a cofinal branch in T. [J
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Proposition
MA implies that every Pwi-tree T either has a branch or a
(cofinal) e-special subtree for some € > 0.

Having an e-special subtree does not guarantee T has no cofinal
branches. ..

... unless we assume something extra about T!
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Coherent Polish wi-trees
A Polish tree T = (X¢, mey,m < £ < wy) is coherent if there is a set
Z such that
1. X¢ C Z¢ for all &,
2. mep(x) = x ['nfor x € Xe and n < & < wy,
3. Forall x,y in X¢ and € > 0 there is a finite £ C & such that

inf de(x,y") <e
y/

with y’ € X satisfying
{C<& Y (Q#y(Q}rcF.

Lemma

If a coherent Pwy-tree has a cofinal branch, then each one of its
cofinal subtrees has a cofinal branch.

In particular, it cannot have a cofinal special subtree.
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Polish coherent families

Let A be a directed set and X, for { € A a family of Polish spaces.
For n < & in A\ we have a contractive surjection

71'5,7: Xg — X77‘

Then (X¢, mey) is a Polish coherent family.
It is nontrivial if
lim Xe = 0.

3

Proposition
Assume PFA. If a Polish coherent family is nontrivial, then for
some € > 0 it has an e-special w1-subtree.



