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Aronszajn trees

Definition
An ω1-tree

is a sequence Xξ, ξ < ω1 of countable sets and
commuting surjections for η < ξ

πξη : Xξ → Xη.

An ω1-tree is Aronszajn if

lim←−
ξ<ω1

Xξ = ∅.

An ω1-tree is special if there exist antichains An, for n < ω, such
that ⋃

ξ<ω1

Xξ =
⋃

n<ω1

An.
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Polish Aronszajn trees

Definition
A Polish ω1-tree is a sequence (Xξ, dξ), ξ < ω1 of Polish spaces
and commuting surjective contractions for η < ξ

πξη : Xξ → Xη.

A Polish ω1-tree is a Polish Aronszajn tree (PA-tree) if
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Special PA-trees

Problem
What is the right definition of a ‘special PA-tree?’

On a Pω1-tree (Xξ, dξ), ξ < ω1 define a pseudo-metric

d(x , y) = dη(πξη(x), y)

if x ∈ Xξ, y ∈ Xη and ξ ≥ η.
Some A ⊆

⋃
ξ Xξ is an ε-antichain if d(x , y) > ε for x 6= y in A.
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ε-special Pω1-trees

Definition
A Pω1-tree is ε-special if there are ε-antichains An, for n ∈ N,
such that (

⋃
nAn) ∩ Xξ is dense in Xξ for each ξ < ω1.

Lemma
If a PA-tree is ε-special then it has no cofinal branches.



ε-special Pω1-trees

Definition
A Pω1-tree is ε-special if there are ε-antichains An, for n ∈ N,
such that (

⋃
nAn) ∩ Xξ is dense in Xξ for each ξ < ω1.

Lemma
If a PA-tree is ε-special then it has no cofinal branches.



MA and ε-special trees

Fix a PA-tree T :

Xξ, for ξ < ω1 and πξη : Xξ → Xη for ω1 > ξ ≥ η.

Fix ε > 0.

Some B = {xξ : x < ω1} is an ε-branch of T if

1. xξ ∈ Xξ for all ξ, and

2. d(xη, xξ) < ε for all ξ > η.
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The key lemma

–the right formulation

Lemma
A Pω1-tree T either has an ε-branch or a ccc forcing adds an
ε/2-antichain.

Pf. Fix a countable dense Zξ ⊆ Xξ for each ξ. Let

P = {p ∈
⋃
ξ

Zξ : p is a finite ε/2-antichain}

ordered by p ≤ q iff p ⊇ q.
We prove that is T has no ε-branches then P is powerfully ccc,
i.e., P<ℵ0 is ccc.
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Proving P is (powerfully) ccc

Fix pξ, for ξ < ω1, in P. We may assume

pξ = p ∪ rξ

and that for some n

rξ = {x0
ξ , . . . x

n−1
ξ }.

Fix a uniform ultrafilter U on ω1.
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Still proving P is (powerfully) ccc

For each ξ fix Aξ ∈ U such that for some

sξ : n2 → 2

all η ∈ Aξ and all (i , j) ∈ n2 we have

d(x i
ξ, x

j
η) <

ε

2
iff sξ(i , j) = 0.

Fix A ∈ U and s such that for all ξ ∈ A we have sξ = s.
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Case 1: s(i , j) = 0 for some i and j .

For ξ < η in A we have (using any ζ ∈ Aξ ∩ Aη)

d(x i
ξ, x

i
η) ≤ d(ξi , x j

η) + d(x j
η, x

i
ξ) < ε

therefore {x i
ξ : ξ ∈ A} defines an ε-branch.

Case 2: s(i , j) = 1 for all i , j .
Then pξ, for ξ ∈ A, is linked hence P is ccc.
The same proof shows that P is powerfully ccc.
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Subtrees and an another key lemma

A sequence Yξ, ξ < ω1 is a subtree of a Pω1-tree T = 〈Xξ, πξη〉 if

1. Yξ ⊆ Xξ for all ξ and

2. πξη[Yξ] ⊆ Yη.

Lemma
If a Pω1-tree T is such that every subtree has an ε-branch for
every ε > 0, then T has a branch.



Subtrees and an another key lemma

A sequence Yξ, ξ < ω1 is a subtree of a Pω1-tree T = 〈Xξ, πξη〉 if

1. Yξ ⊆ Xξ for all ξ and

2. πξη[Yξ] ⊆ Yη.

Lemma
If a Pω1-tree T is such that every subtree has an ε-branch for
every ε > 0, then T has a branch.



Constructing an honest branch

Pf. Pick a 1/2-branch 〈x1
ξ : ξ < ω1〉.

Let X 1
η ⊆ Xη be the metric closure of

{πξη(x1
ξ ) : η < ξ < ω1}.

Then T 1 = 〈X 1
η : η < ω1〉, is a subtree of T .

Pick a 1/4-branch x2
ξ , ξ < ω1, of T 1.

Let X 2
η ⊆ X 1

η be the metric closure of

{πξη(x2
ξ ) : η < ξ < ω1}.

Then T 2 = 〈X 2
η : η < ω1〉, is a subtree of T .

Pick a 1/8-branch x3
ξ , ξ < ω1, of T 1.

Let X 3
η ⊆ X2

η be the metric closure of

{πξη(x3
ξ) : η < ξ < ω1}.

Then T3 = 〈X 3
η : η < ω1〉, is a subtree of T .

. . .
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For each η the sequence xn
ξ , for n < ω, is a Cauchy sequence. Then

xξ = lim
n

xn
ξ

defines a cofinal branch in T .



Proposition

MA implies that every Pω1-tree T either has a branch or a
(cofinal) ε-special subtree for some ε > 0.

Having an ε-special subtree does not guarantee T has no cofinal
branches. . .

. . . unless we assume something extra about T !
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(Discrete) coherent trees

An ω1-tree T is coherent if T ⊆ 2ω1 and for all s and t in T the set

{ξ < ω1 : s(ξ) 6= t(ξ)}

is finite.

Lemma
If a coherent ω1-tree has a cofinal branch, then each one of its
cofinal subtrees has a cofinal branch.
In particular, it cannot have a cofinal special subtree.
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In particular, it cannot have a cofinal special subtree.



Polish coherent families

Let Λ be a directed set and Xξ, for ξ ∈ Λ a family of Polish spaces.

For η < ξ in Λ we have a contractive surjection

πξη : Xξ → Xη.

Then 〈Xξ, πξη〉 is a Polish coherent family.
It is nontrivial if

lim←−
ξ

Xξ = ∅.

Proposition

Assume PFA. If a Polish coherent family is nontrivial, then for
some ε > 0 it has an ε-special ω1-subtree.
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