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ON A PROBLEM OF SPECKER ABOUT EUCLIDEAN

REPRESENTATIONS OF FINITE GRAPHS

L. NGUYEN VAN THÉ

Abstract. Say that a graph G is representable in R
n if there is a map f

from its vertex set into the Euclidean space R
n such that ‖f(x) − f(x′)‖ =

‖f(y)−f(y′)‖ iff {x, x′} and {y, y′} are both edges or both non-edges in G. We
prove that if G finite is neither complete nor independent, it is representable
in R

|G|−2. A similar result is also derived in the case of finite complete edge-
colored graphs.

1. Introduction

Given a (simple and loopless) graph G and a natural number n ∈ N, say that
G is representable in R

n if there is a map f from the vertex set of G (which
we will also denote by G in the sequel) into the Euclidean space R

n such that
‖f(x) − f(x′)‖ = ‖f(y) − f(y′)‖ iff {x, x′} and {y, y′} are both edges or both non-
edges in G. Classical results about 2-distance sets in Euclidean spaces [B81] show

that if G is representable in R
n, then |G| ≤

(

n+2
2

)

where |G| denotes of vertices of
G. Equivalently:

√

|G| −
3

2
−

3

4
≤ n .

On the other hand, it has been known for a long time1 that every finite graph
is representable in R

|G|−1. It is also clear that if G is complete or independent,
then G is not representable in R

|G|−2 and dimension |G|−1 is necessary. But what
about the converse? If G is neither complete nor independent, is it representable in
R

|G|−2? According to Pouzet, who mentions it in [P79] in connection to the famous
Ulam reconstruction problem, this question was asked by Specker before 1972. The
purpose of this note is to prove2:

Theorem 1. Let G be a finite graph. Assume that G is neither complete nor
independent. Then G is representable in R

|G|−2.

More generally, given a complete edge-colored graph (G, λ) (a complete graph G
together with a map λ : G2 −→ R such that λ(x, x) = 0 and λ(y, x) = λ(x, y)) and
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1To our knowledge, this result appeared first in [R84] together with several other results about

Euclidean representations of graphs. It is also a consequence of Schoenberg’s theorem quoted
below.

2We have to admit that due to the lack of references we were able to find about the question, it
could very well be that the result is not new. We feel however that even in that case, the present
note may serve as a useful reference about it in the future.
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n ∈ N, say that G is representable in R
n when there is a map f : G −→ R

n such
that

‖f(x) − f(x′)‖ = ‖f(y) − f(y′)‖ iff λ(x, x′) = λ(y, y′) .

Again, known results about k-distance sets in Euclidean spaces [BBS83] show

that if (G, λ) is representable in R
n, then |G| ≤

(

k+n
k

)

. On the other hand, every

finite (G, λ) is representable in R
|G|−1 and if λ takes only one value, then (G, λ)

is representable in R
|G|−1 but not R

|G|−2. But if λ takes at least two values,
representability in R

|G|−2 is always guaranteed:

Theorem 2. Let (G, λ) be a complete colored graph. Assume that λ takes at least
two different values. Then G is representable in R

|G|−2.

Note that Theorem 1 is a simple consequence of Theorem 2 when λ takes at
most two values. Theorem 2 is proved using the following well-known result due
to Schoenberg providing a criterion for representability of a complete edge-labelled
graph in Euclidean spaces: for a matrix M = (mij)1≤i,j≤n, define

QM = max







∑

1≤i<j≤n

mijxixj :
n

∑

k=1

x2
k = 1 and

n
∑

k=1

xk = 0







.

Theorem (Schoenberg [S38]). Let (G, d) be a complete edge-colored graph where
G = {vk : 1 ≤ k ≤ |G|} and d takes positive values. Let M = (d(vi, vj)

2)1≤i,j≤|G|.

Then (G, d) is isometric to a subset of R
|G|−1 iff QM ≤ 0. In that case, the

dimension of the affine space spanned by (G, d) is (|G| − 1) iff QM < 0.

The paper is organized as follows: for the sake of clarity, we start in section 2
with a proof of Theorem 1. The scheme of the proof is then reproduced in section
3 to prove Theorem 2.

Ackowledgements: I would like to acknowledge the support of the Department
of Mathematics & Statistics Postdoctoral Program at the University of Calgary. I
would also like to sincerely thank Maurice Pouzet for the exciting presentation he
made of the problem. This paper is essentially the fruit of his enthusiasm.

2. Proof of Theorem 1

Let G be a finite graph that is neither complete nor independent. Enumerate
the vertices of G = {vk : 1 ≤ k ≤ |G|} and let MG = (mij)1≤i,j≤|G| denote the
adjacency matrix of G with respect to this enumeration, ie:

mij =

{

1 if {vi, vj} is an edge in G,
0 otherwise.

Let M be the adjacency matrix of the complement of G (the graph obtained
from G by changing all the edges between different vertices into non-edges and
vice-versa). For α, β > 0, let

M(α, β) = αM + βM .

Denoting M(α, β) = (mαβ
ij )1≤i,j≤|G|, say that M(α, β) codes a representation of

G in R
|G|−1 when the complete edge-colored graph (G, d), with d(vi, vj) = m

αβ
ij ,

is isometric to a subset of R
|G|−1. According to Schoenberg’s theorem, we need to

show that there are α 6= β > 0 such that QM(α2,β2) = 0.
2



Claim 1. There are α0, β0 > 0 such that QM(α2

0
,β2

0
) > 0.

Proof. Assume towards a contradiction that QM(α2,β2) ≤ 0 for all α, β > 0. We
show that G is complete or independent. Indeed, first take α, β > 0 such that
2α < β. Since QM(α2,β2) ≤ 0, Schoenberg’s theorem guarantees that M(α, β) codes

a representation ofG in R
|G|−1 and by triangle inequality, no triangle with two sides

of length α and one side of length β appears in this representation. Therefore, G
does not contain the graph H drawn in Figure 1.

r

r r
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�
�
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A
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Figure 1. The graph H .

Similarly, choosing 2β < α, no triangle with one side of length α and two sides
of length β appears in the representation coded by M(α, β). Therefore, G does not
contain the graph K depicted in Figure 2.

r

r r

Figure 2. The graph K.

It follows that G is complete or independent, a contradiction. �

Claim 2. The map M 7→ QM is continuous (n× n matrices are seen as elements

of R
n2

equipped with the standard topology).

Proof. Since the topology of R
n2

is the topology induced by the ℓ1 norm (ie ‖M‖ =
∑

1≤i,j≤n |mij |), it is enough to show that |QM − QN | ≤ ‖M − N‖. This is done

by observing that whenever
∑n

k=1 x
2
k = 1, we have

∣

∣

∣

∣

∣

∣

∑

1≤i<j≤n

mijxixj −
∑

1≤i<j≤n

nijxixj

∣

∣

∣

∣

∣

∣

≤
∑

1≤i<j≤n

|mij − nij ||xixj |

≤
∑

1≤i<j≤n

|mij − nij |

≤ ‖M −N‖ .

Therefore
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QM = max







∑

1≤i<j≤n

mijxixj :

n
∑

k=1

x2
k = 1 and

n
∑

k=1

xk = 0







≤ max







∑

1≤i<j≤n

nijxixj + ‖M −N‖ :

n
∑

k=1

x2
k = 1 and

n
∑

k=1

xk = 0







≤ QN + ‖M −N‖ .

Hence, QM − QN ≤ ‖M − N‖ and by symmetry, QN − QM ≤ ‖M − N‖. It
follows that |QM −QN | ≤ ‖M −N‖. �

By Claim 1 pick α0, β0 > 0 such that QM(α2

0
,β2

0
) > 0. Note that without loss of

generality, we may assume that α0 6= β0. This is because continuity of the map
M 7→ QM proved in Claim 2 implies continuity of (α, β) 7→ QM(α,β). For t ∈ [0, 1],
consider the matrix

M
(

1 + t(α2
0 − 1), 1 + t(β2

0 − 1)
)

.

It defines a continuous curve from M(1, 1) to M(α2
0, β

2
0), and the map

ψ : t 7→ Q
M(1+t(α2

0
−1),1+t(β2

0
−1))

is continuous on [0, 1]. Observe that M(1, 1) codes the equilateral metric space on
|G| points where all the distances are equal to one. This metric space is Euclidean
and spans an affine space of dimention |G| − 1, therefore ψ(0) = QM(1,1) < 0.
Observe on the other hand that ψ(1) = QM(α2

0
,β2

0
) > 0. So by the intermediate

value theorem, there is τ ∈ (0, 1) such that ψ(τ) = 0. That means

Q
M(1+τ(α2

0
−1),1+τ(β2

0
−1)) = 0 .

So set α =
√

1 + τ(α2
0 − 1) and β =

√

1 + τ(β2
0 − 1). Then α 6= β > 0 and

M (α, β) codes a representation of G in R
|G|−2. �

3. Proof of Theorem 2

The proof follows exactly the same pattern as the proof of Theorem 1 so we only
emphasize the ideas. Let (G, λ) be a complete colored graph where λ has range
{l1, . . . , lp} of size at least two. Enumerate the vertices of G = {vk : 1 ≤ k ≤ |G|}
and let Mi denote the adjacency matrix of the graph obtained from G by keeping
only the edges with color li. For α1, . . . , αp > 0, let

M(α1, . . . , αp) =

p
∑

i=1

αiMi .

According to Schoenberg’s theorem, we need to show that there are distinct
α1, . . . , αp > 0 such that QM(α2

1
,...,α2

p
) = 0.

Claim. There are a1, . . . , ap > 0 such that QM(a2

1
,...,a2

p
) > 0.

Proof. Suppose not. Then QM(α2

1
,...,α2

p
) ≤ 0 for all α1, . . . , αp > 0. Varying the

coefficients α1, . . . , αp and taking, turn by turn, αi much larger than all the other
coefficients, triangle inequality in the corresponding representations shows that all
the triangles in (G, λ) must have all their egdes of the same color. Therefore, λ
only takes one value, a contradiction. �
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So pick a1, . . . , ap > 0 such that QM(a2

1
,...,a2

p
) > 0. Note that the continuity of

the map M 7→ QM (Claim 2) guarantees that without loss of generality, we may
assume that all the ai’s are distinct. For t ∈ [0, 1], consider the matrix

M
(

1 + t(a2
1 − 1), . . . , 1 + t(a2

p − 1)
)

.

It defines a continuous curve from M(1, . . . , 1) to M(a2
1, . . . , a

2
p), and the map

ψ : t 7→ Q
M(1+t(a2

1
−1),...,1+t(a2

p
−1))

is continuous on [0, 1]. Since M(1, . . . , 1) codes a Euclidean metric space that spans
an affine space of dimention |G| − 1, we have ψ(0) = QM(1,...,1) < 0. On the other
hand, ψ(1) = QM(a2

1
,...,a2

p
) > 0. So by the intermediate value theorem, there is

τ ∈ (0, 1) such that ψ(τ) = 0. That means

Q
M(1+τ(a2

1
−1),...,1+τ(a2

p
−1)) = 0 .

So for 1 ≤ i ≤ p, set αi =
√

1 + τ(a2
i − 1). Then all the αi’s are > 0 and distinct,

and M (α1, . . . , αp) codes a representation of G in R
|G|−2. �
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